fbpx
blog

मैट्रिक्स के ईजन मूल्य और ईजन वेक्टर

Krystian Karczyński

कृष्टियन कार्चिंस्की

eTrapez सेवा के संस्थापक और प्रमुख।

पोलैंड के पोज़्नान तकनीकी विश्वविद्यालय के गणित में मास्टर। वर्षों से गणित के निजी शिक्षक। पोलैंड के सभी छात्रों के बीच बहुत लोकप्रिय हो चुके eTrapez के पहले कोर्सेज के निर्माता।

स्ज़ेचिन (पोलैंड) में रहते हैं। जंगल में टहलना, समुद्र तट पर आराम करना और कयाकिंग करना पसंद है।


ईजन वैक्टर्स और ईजन वैल्यूज – ये क्या हैं?

मैट्रिक्स के ईजन वैल्यूज और ईजन वैक्टर्स पढ़ाई में मैट्रिक्स विषय के विस्तार के रूप में आते हैं (या नहीं भी आ सकते हैं)। मैंने इन्हें अपने कोर्स में शामिल नहीं किया था, इसलिए इस विषय में रुचि रखने वालों के लिए यह पोस्ट वास्तव में उपयोगी हो सकती है।

पहले क्या जानना ज़रूरी है?

  • मैट्रिक्स
  • मध्य विद्यालय से पॉलीनोमियल समीकरण (आमतौर पर केवल दूसरे और तीसरे डिग्री के)

ईजन वैल्यूज और ईजन वैक्टर्स की गणना कदम दर कदम

  1. शुरू में आपके पास एक वर्ग मैट्रिक्स होता है (केवल), मान लीजिए A. बस।
  2. आप मैट्रिक्स {{A}_{\lambda }}=A-\lambda I की गणना करते हैं जहाँ \lambda एक संख्या है, जो एक अज्ञात है, और I एक इकाई मैट्रिक्स है (अर्थात एक वर्ग मैट्रिक्स जिसमें विकर्ण पर एक हैं और बाकी सभी शून्य हैं)।
  3. आप मैट्रिक्स {{A}_{\lambda }} का डिटर्मिनेंट निकालते हैं।
  4. यह डिटर्मिनेंट मैट्रिक्स की तथाकथित चरित्रिक समीकरण है। आप इसे शून्य के बराबर मानते हैं और इसके मूलों की गणना करते हैं। ये मूल ही मैट्रिक्स के ईजन वैल्यूज हैं। आप इन्हें {{\lambda }_{1}},{{\lambda }_{2}},{{\lambda }_{3}},\ldots के रूप में चिह्नित करते हैं।
  5. आप मूलों को क्रमशः समीकरण में डालते हैं: {{A}_{\lambda }}X=0, जहाँ X एक अज्ञात वेक्टर है (अर्थात एक स्तंभ मैट्रिक्स)। आप इस समीकरण को हल करते हैं। समाधान वेक्टर्स का एक सेट होगा X, जिनमें से प्रत्येक को ईजन वेक्टर कहा जा सकता है।

उदाहरण 1 (दो डिग्री के वर्ग मैट्रिक्स के साथ)

मैट्रिक्स A=\left[ \begin{matrix}3 & 2 \\4 & 1 \end{matrix} \right] के ईजन वेक्टर्स और ईजन वैल्यूज की गणना करें।

मैं इस कार्य को ऊपर दिए गए स्कीम के अनुसार कदम दर कदम हल करता हूँ।

1.

A=\left[ \begin{matrix}3 & 2 \\4 & 1 \end{matrix} \right]

2.
{{A}_{\lambda }}= \left[ \begin{matrix}3 & 2 \\4 & 1 \end{matrix} \right]-\lambda \cdot\left[ \begin{matrix}1 & 0 \\0 & 1 \end{matrix} \right] = \left[ \begin{matrix}3 & 2 \\4 & 1 \end{matrix} \right]-\left[ \begin{matrix}\lambda & 0 \\0 & \lambda \end{matrix} \right] = \left[ \begin{matrix}3-\lambda & 2 \\4 & 1-\lambda \end{matrix} \right]

3.
\left| \begin{matrix}3-\lambda & 2 \\4 & 1-\lambda \end{matrix} \right|=\left( 3-\lambda \right)\left( 1-\lambda \right)-2\cdot 4=3-3\lambda -\lambda +{{\lambda }^{2}}-8={{\lambda }^{2}}-4\lambda -5


4.
{{\lambda }^{2}}-4\lambda -5=0
\Delta ={{\left( -4 \right)}^{2}}-4\cdot 1\cdot \left( -5 \right)=16+20=36
{{\lambda }_{1}}=\frac{-\left( -4 \right)-\sqrt{36}}{2\cdot 1}=\frac{4-6}{2}=\frac{-2}{2}=-1
{{\lambda }_{2}}=\frac{-\left( -4 \right)+\sqrt{36}}{2\cdot 1}=\frac{4+6}{2}=\frac{10}{2}=5
मैट्रिक्स के ईजन वैल्यूज: -1 और 5 हैं।


5.

ईजन वेक्टर्स लिए {{\lambda }_{1}}=-1

{{\lambda }_{1}}=-1 के लिए:


{{A}_{{{\lambda }_{1}}}}=\left[ \begin{matrix}3-\left( -1 \right) & 2 \\4 & 1-\left( -1 \right) \end{matrix} \right]=\left[ \begin{matrix}4 & 2 \\4 & 2 \end{matrix} \right]


\left[ \begin{matrix}4 & 2 \\4 & 2 \end{matrix} \right]X=0


\left[ \begin{matrix}4 & 2 \\4 & 2 \end{matrix} \right]\left[ \begin{matrix}x \\y \end{matrix} \right]=\left[ \begin{matrix}0 \\0 \end{matrix} \right]


इससे (मैट्रिक्स को बाएँ से गुणा कर और सही साइड के मैट्रिक्स एलीमेंट से तुलना कर):
\left\{ \begin{matrix}& 4x+2y=0\\& 4x+2y=0\\\end{matrix} \right.


इसका मतलब है कि यह संबंध पूरा होना चाहिए:
4x+2y=0


यह समीकरण अनंत संख्या में x और y जोड़े संतुष्ट करती है, इसलिए इसके अनंत समाधान हैं।

इसका मतलब है कि ईजन वेक्टर्स के लिए ईजन वैल्यू {{\lambda }_{1}}=-1 के अनंत हैं।

उदाहरण के लिए, अगर मैं x=1 मान लूं तो मुझे 4\cdot 1+2y=0 मिलेगा, यानी y=-2

इसलिए एक उदाहरण ईजन वेक्टर होगा:

\left[ \begin{matrix}1 \\-2 \end{matrix} \right]

सामान्य तौर पर, ईजन वेक्टर्स के निर्देशांक होंगे:

\left[ \begin{matrix}x \\-2x \end{matrix} \right]

क्योंकि संबंध 4x+2y=0 से, हम निकाल सकते हैं कि y=-2x

सामान्य रूप से, ईजन वेक्टर्स के निर्देशांक होंगे: \left[ \begin{matrix}x \\-2x \end{matrix} \right] क्योंकि संबंध 4x+2y=0 से, हम निकाल सकते हैं कि y=-2x

ईजन वेक्टर्स के लिए {{\lambda }_{2}}=5

{{\lambda }_{2}}=5 के लिए:


{{A}_{{{\lambda }_{2}}}}=\left[ \begin{matrix}3-5 & 2 \\4 & 1-5\end{matrix} \right]=\left[ \begin{matrix}-2 & 2 \\4 & -4 \end{matrix} \right]


\left[ \begin{matrix}-2 & 2 \\4 & -4 \end{matrix} \right]X=0


\left[ \begin{matrix}-2 & 2 \\4 & -4 \end{matrix} \right]\left[ \begin{matrix}x \\y \end{matrix} \right]=\left[ \begin{matrix}0 \\0 \end{matrix} \right]


अब (फिर से मैट्रिक्स को बाएँ से गुणा कर और सही साइड के मैट्रिक्स एलीमेंट से तुलना कर):
\left\{ \begin{matrix}&-2x+2y=0\\&4x-4y=0\\\end{matrix} \right.


यह प्रणाली हमेशा की तरह – अनिर्धारित है (अनंत समाधान हैं), लेकिन मेरे पास एक संबंध है:

-2x+2y=0 x=y


यह समीकरण अनंत संख्या में जोड़ियों को संतुष्ट करती है जहाँ x=y, इसलिए इसके अनंत समाधान हैं।

इसका मतलब है कि ईजन वैल्यू {{\lambda }_{2}}=5 के लिए ईजन वेक्टर्स अनंत हैं और आम तौर पर उनका समीकरण होगा:

\left[ \begin{matrix}x \\x \end{matrix} \right]

उदाहरण के लिए, अगर मैं x=1 मान लूं तो मुझे ईजन वेक्टर मिलेगा:

\left[ \begin{matrix}1 \\1 \end{matrix} \right]

उदाहरण 2 (तीन डिग्री के वर्ग मैट्रिक्स के साथ)

मैट्रिक्स A=\left[ \begin{matrix}2 & 1 & 0 \\-6 & 1 & -6 \\-3 & 1 & -1 \end{matrix} \right] के ईजन वेक्टर्स और ईजन वैल्यूज की गणना करें।

मैं इसे वही स्कीमा का उपयोग करके कदम दर कदम हल करता हूँ।

1.

A=\left[ \begin{matrix}2 & 1 & 0 \\-6 & 1 & -6 \\-3 & 1 & -1 \end{matrix} \right]


2.
{{A}_{\lambda }}= \left[ \begin{matrix}2 & 1 & 0 \\-6 & 1 & -6 \\-3 & 1 & -1 \end{matrix} \right]-\lambda \cdot\left[ \begin{matrix}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1 \end{matrix} \right] = \left[ \begin{matrix}2 & 1 & 0 \\-6 & 1 & -6 \\-3 & 1 & -1 \end{matrix} \right]-\left[ \begin{matrix}\lambda & 0 & 0 \\0 & \lambda & 0 \\0 & 0 & \lambda \end{matrix} \right] = \left[ \begin{matrix}2-\lambda& 1 & 0 \\-6 & 1-\lambda & -6 \\-3 & 1 & -1-\lambda \end{matrix} \right]


3.

\left| \begin{matrix}2-\lambda& 1 & 0 \\-6 & 1-\lambda & -6 \\-3 & 1 & -1-\lambda \end{matrix} \right|

Sarrus के नियम से गणना करता हूँ और पाता हूँ:

\left| A \right| = -{{\lambda }^{3}}+2{{\lambda }^{2}}-11\lambda +22


4.
-{{\lambda }^{3}}+2{{\lambda }^{2}}-11\lambda +22=0

अब शब्दों को समूहीकृत करने का ट्रिक (जैसे स्कूल में):
{{\lambda }^{2}}\left( -\lambda +2 \right)+11\left( -\lambda +2 \right)=0


\left( {{\lambda }^{2}}+11 \right)\left( -\lambda +2 \right)=0

इसका मत लब है:

{{\lambda }^{2}}+11=0 या -\lambda +2=0

{{\lambda }^{2}}+11 = 0 का कोई वास्तविक संख्याओं में समाधान नहीं है (लेकिन यदि आपके प्रोफेसर संख्यात्मक मूल्यों में भी ईजन वैल्यूज की गणना करने की मांग करते हैं, तो आपके पास यहाँ दो जटिल संख्याएँ होंगी।)

-\lambda +2 = 0 \lambda = 2


मैट्रिक्स का ईजन वैल्यू (वास्तविक संख्याओं में): 2 है।


5.

ईजन वेक्टर्स {{\lambda }}=2 के लिए

\lambda=2 के लिए:


\left[ \begin{matrix}2-2& 1 & 0 \\-6 & 1-2 & -6 \\-3 & 1 & -1-2\end{matrix} \right]=\left[ \begin{matrix}0& 1 & 0 \\-6 & -1 & -6 \\-3 & 1 & -3\end{matrix} \right]


\left[ \begin{matrix}0& 1 & 0 \\-6 & -1 & -6 \\-3 & 1 & -3\end{matrix} \right]X=0


\left[ \begin{matrix}0& 1 & 0 \\-6 & -1 & -6 \\-3 & 1 & -3\end{matrix} \right]\left[ \begin{matrix}x \\y \\z \end{matrix} \right]=\left[ \begin{matrix}0 \\0 \\0 \end{matrix} \right]


इसके बाद (मैट्रिक्स को बाएं से गुणा करते हुए और दाएं हाथ के मैट्रिक्स के समान तत्व के साथ तुलना करते हुए):


\left\{ \begin{matrix}y=0\\-6x-y-6z=0\\-3x+y-3z=0\\ \end{matrix} \right.


याद रखें, यह हमेशा एक अनिर्धारित प्रणाली है, जिसमें अनंत समाधान होते हैं। इसे हल करने के लिए, आप क्रोनेकर-कैपेली थ्योरम का उपयोग कर सकते हैं, लेकिन यह यहाँ विशेष रूप से सरल है।

पहले से y=0 मानते हुए, मुझे बाकी दो समीकरणों से मिलता है:

\left\{ \begin{matrix}-6x-6z=0\\-3x-3z=0\\ \end{matrix} \right.

इन समीकरणों से मुझे < span class="katex-eq" data-katex-display="false"> z=-x का संबंध मिलता है।

इसलिए, \lambda=2 के लिए ईजन वेक्टर्स अनंत हैं और उन्हें निम्नलिखित संबंध के द्वारा वर्णित किया जा सकता है:

\left[ \begin{matrix}x \\0 \\-x \end{matrix} \right]

एक उदाहरण के रूप में, ईजन वेक्टर हो सकता है:

\left[ \begin{matrix}1 \\0 \\-1 \end{matrix} \right]

वोल्फ्रामअल्फा में ईजनवैल्यू और ईजनवेक्टर्स कैसे निकालें?

अगर आपको केवल तैयार समाधान चाहिए, या आप अपने परिणाम की जांच करना चाहते हैं, तो आप वोल्फ्रामअल्फा के इंटरनेट कैलकुलेटर का उपयोग कर सकते हैं। वेबसाइट पर जाएँ:

www.wolframalpha.com

फिर सर्च बार में मैट्रिक्स टाइप करें, जिसके ईजनवैल्यू और ईजनवेक्टर्स आप निकालना चाहते हैं, इस प्रकार से:

{{पहली पंक्ति के तत्व अल्पविराम से अलग},{दूसरी पंक्ति के तत्व अल्पविराम से अलग},…}

उदाहरण के लिए:

वोल्फ्राम में टाइप किए गए मैट्रिक्स का उदाहरण

फिर बस ENTER दबाकर समाधान प्राप्त करें।

चरित्रात्मक बहुपद – आप Characteristic polynomial से पढ़ सकते हैं।

ईजनवैल्यू – आप Eigenvalues से पढ़ सकते हैं।

ईजनवेक्टर्स – आप Eigenvectors से पढ़ सकते हैं।

वीडियो

मैंने एक अन्य पोस्ट में वीडियो भी बनाया है, जिसमें मैं तीन उदाहरणों पर ईजनवैल्यू और ईजनवेक्टर्स की गणना कैसे करें, यह दिखाता हूँ, देखने के लिए आमंत्रित करता हूँ:

ईजनवैल्यू और ईजनवेक्टर्स – 3 उदाहरण वीडियो

धन्यवाद

मुझे आशा है कि इस पोस्ट को पढ़ने और कुछ उदाहरणों को करने के बाद, आपको कॉलेज में ईजनवैल्यू और ईजनवेक्टर्स की गणना करने में कोई समस्या नहीं होगी।

अगर आपके पास कोई संदेह है, या आप समझ नहीं पा रहे हैं कि कोई उदाहरण कैसे काम करता है – कृपया पोस्ट के नीचे कमेंट्स में मुझे बताएं।

बेस्टसेलर्स (केवल पोलिश भाषा में कोर्सेज)

Kurs Mechanika - Statyka

Studia / Autor: mgr inż. Adam Kasprzak

39,00 

Kurs Mechanika - Kinematyka

Studia / Autor: mgr inż. Adam Kasprzak

39,00 

Kurs Statystyka

Studia / Autor: mgr Krystian Karczyński

39,00 

Kurs Matura Rozszerzona (Formuła 2023 i 2015)

Szkoła Średnia / Autor: mgr inż. Anna Zalewska

59,00 

eTrapez के सभी कोर्स देखें (केवल पोलिश भाषा में कोर्सेज)

क्या आप कॉलेज या हाई स्कूल स्तर की गणित की ट्यूशन खोज रहे हैं? या शायद आपको एक ऐसा कोर्स चाहिए जो आपको प्रवेश परीक्षा के लिए तैयार करे?

हम eTrapez टीम हैं। हम स्पष्ट, सरल और बहुत ही विस्तृत तरीके से गणित सिखाते हैं - हम ज्ञान के प्रति सबसे अधिक प्रतिरोधी व्यक्ति तक पहुंचते हैं।

हमने समझने योग्य भाषा में व्याख्यान वीडियो कोर्स बनाए हैं जिन्हें कंप्यूटर, टैबलेट या फोन पर डाउनलोड किया जा सकता है। आप रिकॉर्डिंग चालू करते हैं, देखते और सुनते हैं, जैसे कि ट्यूशन पर हों। दिन या रात के किसी भी समय।

प्रातिक्रिया दे

आपका ईमेल पता प्रकाशित नहीं किया जाएगा. आवश्यक फ़ील्ड चिह्नित हैं *

आपकी टिप्पणी उपरोक्त हस्ताक्षर के साथ हमारी साइट पर सार्वजनिक रूप से उपलब्ध होगी। आप किसी भी समय अपनी टिप्पणी को बदल सकते हैं या हटा सकते हैं। इस फॉर्म में प्रदान किए गए व्यक्तिगत डेटा का प्रशासक eTrapez Usługi Edukacyjne E-Learning Krystian Karczyński है। डेटा प्रोसेसिंग के नियम और इससे संबंधित आपके अधिकार गोपनीयता नीति में वर्णित हैं।