Volumen eines Rotationskörpers – Aufgabe mit einem Haken

Bei schwierigeren Aufgaben zu bestimmten Integralen ist es oft gut, wachsam zu bleiben – eine scheinbar sehr schwierige Aufgabe kann mit einer einfachen Formel aus der Mittelschule gelöst werden.

Aufgabe zum Volumen eines Rotationskörpers

Nehmen wir an, wir müssen das Volumen eines Körpers berechnen, der durch Drehen einer Kurve entsteht:

sich um die OX-Achse dreht (na gut, sagen wir „rotiert“). Ein paar geordnete Bewegungen, bekannt aus der Oberschule…

…und wir stellen fest, dass unsere Kurve einfach ein kleines Kreis mit dem Zentrum im Punkt (2,0) und einem Radius von 2 ist. Was nun? Wir leiten y aus der Formel ab und treiben das bestimmte Integral voran: ?

Lösung

Nein… halten wir mal kurz inne. Atmen wir tief ein. Überlegen wir. Ein kleiner Kreis… Er dreht sich… Was entsteht durch solch eine Drehung? Natürlich eine Kugel. Die Formel für das Volumen einer Kugel kennen wir aus der Mittelschule:

Den Radius kennen wir bereits (er beträgt zwei), das bedeutet:

Und voilà, wir haben die Antwort, ohne auch nur die Integrale anzurühren 🙂

Krystian Karczyński

Założyciel i szef serwisu eTrapez.

Magister matematyki Politechniki Poznańskiej. Korepetytor matematyki z wieloletnim stażem. Twórca pierwszych Kursów eTrapez, które zdobyły ogromną popularność wśród studentów w całej Polsce.

Mieszka w Szczecinie. Lubi spacery po lesie, plażowanie i kajaki.

Leave a Reply

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

Ihr Kommentar wird zusammen mit der obigen Signatur öffentlich auf unserer Seite verfügbar sein. Sie können Ihren Kommentar jederzeit ändern oder löschen. Der Verantwortliche für die persönlichen Daten, die in diesem Formular angegeben sind, ist eTrapez Usługi Edukacyjne E-Learning Krystian Karczyński. Die Regeln für die Datenverarbeitung und Ihre damit verbundenen Rechte sind in der Datenschutzrichtlinie beschrieben.