Granice ciągów z logarytmami

Picture of Krystian Karczyński

Krystian Karczyński

Do granic wielu ciągów z logarytmami śmiało stosować można przekształcenia i wzory na logarytmy znane ze szkoły średniej. Na przykład:

Przykład na granicę ciągu z logarytmami

W sytuacjach, w których w logarytmach były różne podstawy i za bardzo nie dało się nic z tym zrobić sprowadzało się je do jednej podstawy ze wzoru: . W naszej granicy fajnie i dogodnie będzie za tą podstawę przyjąć: . Będziemy mieli więc granicę ciągu:

Wiemy, że , czyli w naszym wyrażeniu . Zatem:

A to wyrażenie korzystając znowu ze wzoru ze szkoły średniej (tylko tym razem w drugą stronę) równe będzie

Co jest oczywiście wynikiem (liczbą niewymierną).

Obeszło się nawet bez stosowania jakiś metod na granice – wystarczyły same przekształcenia logarytmów ze szkoły średniej.

Chcesz wiedzieć więcej o obliczaniu granic? Polecam mój Kurs 🙂

konometria jest dosyć młodą dziedziną wypływającą z ekonomii i matematyki. W praktyce, dzięki modelom ekonometrycznym, możesz „zmierzyć gospodarkę”.Polega to konkretnie na zmierzeniu, jak zachowuje się jedna zmienna w zależności od innych. I na podstawie analizy tego, co było, możesz określać, co będzie się działo w przyszłości.

Wykorzystasz do tego przeróżne obliczenia, testy, schematy. Jedne będą bardzo proste, inne trudniejsze. Jednak najczęściej będzie się liczyło nie to, jak dojdziesz do wyniku, ale jak go zinterpretujesz, odczytasz i jakie wnioski wyciągniesz.

Poniższe Wykłady dotykają najważniejszych pojęć teoretycznych. Jestem przekonana, że pomogę Ci odkrywaniu tego, czym jest ekonometria. I przy okazji uda Ci się zaliczyć ten przedmiot na studiach.

4 Komentarzy

  1. mam pytanie co do granicy ciągu lim n->plus nieskończoność log n gdyż w odp do zadania mam plus nieskończoność a w pewnych materiałach w \internecie znalazłam że powinno to byc minus nieskończoność i nierozumiem tej rozbieżności. Pozdrawiam

    1. Krystian Karczyński

      Powinno być plus nieskończoność.

      Jeżeli w podstawie logarytmu jest liczba mniejsza od 1 (np. [pmath]log_{o,5}{n}[/pmath], wtedy dąży on do -[pmath]\infty[/pmath].

      Jednaj w przypadku log n w podstawie logarytmu jest liczba 10 (jest to logarytm dziesiętny), zatem dąży on do +[pmath]\infty[/pmath].

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *

Twój komentarz będzie dostępny publicznie na naszej stronie razem z powyższym podpisem. Komentarz możesz zmienić, lub usunąć w każdej chwili. Administratorem danych osobowych podanych w tym formularzu jest eTrapez Usługi Edukacyjne E-Learning Krystian Karczyński. Zasady przetwarzania danych oraz Twoje uprawnienia z tym związane opisane są w Polityce Prywatności.


Kategorie

Wirtualny nauczyciel AI działający w przeglądarce internetowej.