कार्यों के क्षैतिज और तिरछे अभिसारी

Picture of Krystian Karczyński

Krystian Karczyński

फ़ंक्शन्स के क्षैतिज और तिरछे अभिसारियों के बीच का संबंध यह है कि क्षैतिज अभिसारी तिरछे अभिसारियों का एक विशेष मामला हैं। इसलिए, हर क्षैतिज अभिसारी एक तिरछा अभिसारी है, पर हर तिरछा अभिसारी क्षैतिज नहीं होता है।

आपको फ़ंक्शन के अभिसारियों की गणना को आसान बनाने के लिए इसका उपयोग करना चाहिए। मूल रूप से इस विषय पर दो दृष्टिकोण हैं:

1. सबसे पहले हम क्षैतिज अभिसारियों की गणना करते हैं

यह दृष्टिकोण मेरे वीडियो कोर्स “फ़ंक्शन्स के व्यवहार का अध्ययन” में दिखाया गया है।
एक फ़ंक्शन में क्षैतिज अभिसारी के होने की शर्त है:

या

यदि क्षैतिज अभिसारी निकलते हैं, तो हम तिरछे अभिसारियों की गणना नहीं करते (मानो तिरछे पहले ही निकल चुके हों – याद रखें कि क्षैतिज भी एक प्रकार के तिरछे होते हैं)। हालाँकि, यदि क्षैतिज अभिसारी नहीं निकलते हैं तो हमें समस्या होती है – हमें तिरछे अभिसारियों की गणना फिर से करनी पड़ती है।

बेशक, स्थिति थोड़ी और जटिल है: क्षैतिज अभिसारी में “निकल” सकता है, और में “नहीं निकल” सकता है। ऐसी स्थिति में हम में तिरछे अभिसारी की मौजूदगी की जाँच नहीं करेंगे (क्योंकि वह पहले ही वहाँ निकल चुका है), लेकिन हमें में इसकी जाँच करनी होगी।

2. पहले तिरछे अभिसारी गणना करें

…और फिर क्षैतिज अभिसारी हमें (या नहीं) स्वचालित रूप से मिल जाएंगे; हमें केवल सही तरीके से उत्तरों की व्याख्या करनी होगी। इस पद्धति को मैं अपने कोर्स में नहीं दिखाता हूँ। इसकी कमी यह है कि फ़ंक्शन में तिरछे अभिसारी के होने की शर्तें थोड़ी जटिल होती हैं:

और

या:

और

…और इसका लाभ यह है कि एक बार गणना कर लेने के बाद, आगे कुछ भी गणना करने की ज़रूरत नहीं होती। यदि शर्तें पूरी होती हैं और तिरछे अभिसारी के अस्तित्व की शर्तों में से नंबर (या ) शून्य के बराबर होता है, तो यह दर्शाता है कि तिरछा अभिसारी वास्तव में एक क्षैतिज अभिसारी है।

काम को और भी छोटा करने के लिए, हम सीधे गणना कर सकते हैं:

और

और और के लिए शर्तों को अलग से गणना करनी चाहिए तभी जब यह आवश्यक हो (जब परिणाम में अंतर आएगा कि क्या x की ओर जा रहा है या की ओर).

konometria jest dosyć młodą dziedziną wypływającą z ekonomii i matematyki. W praktyce, dzięki modelom ekonometrycznym, możesz „zmierzyć gospodarkę”.Polega to konkretnie na zmierzeniu, jak zachowuje się jedna zmienna w zależności od innych. I na podstawie analizy tego, co było, możesz określać, co będzie się działo w przyszłości.

Wykorzystasz do tego przeróżne obliczenia, testy, schematy. Jedne będą bardzo proste, inne trudniejsze. Jednak najczęściej będzie się liczyło nie to, jak dojdziesz do wyniku, ale jak go zinterpretujesz, odczytasz i jakie wnioski wyciągniesz.

Poniższe Wykłady dotykają najważniejszych pojęć teoretycznych. Jestem przekonana, że pomogę Ci odkrywaniu tego, czym jest ekonometria. I przy okazji uda Ci się zaliczyć ten przedmiot na studiach.

प्रातिक्रिया दे

आपका ईमेल पता प्रकाशित नहीं किया जाएगा. आवश्यक फ़ील्ड चिह्नित हैं *

आपकी टिप्पणी उपरोक्त हस्ताक्षर के साथ हमारी साइट पर सार्वजनिक रूप से उपलब्ध होगी। आप किसी भी समय अपनी टिप्पणी को बदल सकते हैं या हटा सकते हैं। इस फॉर्म में प्रदान किए गए व्यक्तिगत डेटा का प्रशासक eTrapez Usługi Edukacyjne E-Learning Krystian Karczyński है। डेटा प्रोसेसिंग के नियम और इससे संबंधित आपके अधिकार गोपनीयता नीति में वर्णित हैं।


Kategorie

Wirtualny nauczyciel AI działający w przeglądarce internetowej.