Układy równań jednorodne (liczba rozwiązań przy użyciu rzędu macierzy)

Układy równań liniowych jednorodne to taki układy, w których wszystkie wyrazy wolne równe są 0. Wyglądają one tak:

Postać ogólna układu równań jednorodnych

Na przykład:

Przykładowy jednorodny układ równań

Możliwe liczby rozwiązań w układach równań liniowych

Przypomnijmy się, że w każdym układzie równań liniowych możliwe są trzy sytuacje:

  1. Układ ma 1 rozwiązanie (kiedy rząd macierzy głównej = rząd macierzy uzupełnionej = liczba niewiadomych w układzie: rz(A)=rz(U)=n)
  2. Układ ma nieskończenie wiele rozwiązań (kiedy rząd macierzy głównej = rząd macierzy uzupełnionej i jest mniejszy od liczby niewiadomych w układzierz(A)=rz(U)<n)
  3. Układ nie ma rozwiązań (kiedy rząd macierzy głównej nie jest równy rzędowi macierzy uzupełnionej)

Macierz uzupełniona to macierz główna z dodaną kolumną wyrazów wolnych. W przypadku układu jednorodnego, będzie to kolumna z samymi zerami. Podczas liczenia rzędów można ją po prostu wykreślić i uzyskać w ten sposób samą macierz główną.

W naszym przykładzie rząd macierzy głównej równy jest:

Rząd macierzy głównej z przykładuA rząd macierzy uzupełnionej:

Rząd macierzy uzupełnionej z przykładu

Na przykładzie widać, że rz(A)=rz(U) i widać, że tak będzie zawsze, w każdym układzie jednorodnym.

Możliwe liczby rozwiązań w układzie jednorodnym

Skoro tak, to w układzie równań jednorodnych zachodzić będą tylko sytuacje 1 lub 2. Układ zawsze będzie miał rozwiązania, pytanie tylko czy będzie to 1 rozwiązanie, czy nieskończenie wiele rozwiązań.

Idźmy dalej.

Zdefiniujmy sobie coś takiego, jak „rozwiązanie zerowe”. Rozwiązaniem zerowym nazwiemy takie rozwiązanie, w którym wartości wszystkich niewiadomych równe są 0.

Mówiąc o układach równań jednorodnych, zauważyć można, że:

Rozwiązanie zerowe jest zawsze rozwiązaniem układu jednorodnego.

Łatwo to sprawdzić: jeżeli za wszystkie niewiadome w równaniach wstawimy zera widać jasno, że każde równanie układu jednorodnego będzie spełnione, zawsze i w każdym układzie jednorodnym.

Jeżeli wiemy więc, że jednorodny układ równań liniowych ma 1 rozwiązanie (a jest tak, kiedy rz(A)=rz(U)=n), to wiemy także, że jest to na pewno rozwiązanie zerowe.

Jeżeli zaś wiemy, że jednorodny układ równań liniowych ma nieskończenie wiele rozwiązań (a jest tak, kiedy rz(A)=rz(U)<n), to wiemy, że układ ma rozwiązanie zerowe, ale oprócz niego jakieś rozwiązania niezerowe.

Jeżeli w zadaniu mamy więc polecenie: „sprawdź, czy układ jednorodny ma rozwiązania niezerowe”, wystarczy wykazać, że jest to układ nieoznaczony, w którym rząd macierzy głównej i uzupełnionej jest mniejszy od liczby niewiadomych.

W niektórych układach jest to bardzo proste, na przykład tutaj:

Drugi przykład układu równań jednorodnychMacierz główna układu miała by 4 wiersze i 5 kolumn, zatem jej rząd wyjdzie co najwyżej 4. Rząd macierzy uzupełnionej tak samo – wiemy już dlaczego. Liczba niewiadomych jest zaś równa 5. Od razu więc można stwierdzić, że układ jest nieoznaczony i że istnieją jakieś rozwiązania niezerowe tego układu.

Paczka wszystkich Kursów eTrapez

139 zł

Zobacz więcej