高斯法 vs 克莱默法 vs 克罗内克-卡佩利法 —— 在线性方程组解中的矩阵应用

随着方程和未知数的不断增加,解决方程组的需求实际上促进了矩阵研究的发展,这种研究早在古巴比伦和中国就已开始。

解线性方程组的方法

我们可以通过以下方法解决线性方程组:

– 克莱默方法,结合克罗内克-卡佩利定理

– 高斯方法

必须说,高斯方法具有明显优势。不仅因为它的通用性(克莱默和克罗内克-卡佩利也能处理任何系统),而是因为计算的相对容易。它不需要计算行列式,这在处理例如10个方程和12个未知数的系统时显得尤为重要…

因此,我真心推荐高斯

Krystian Karczyński

Założyciel i szef serwisu eTrapez.

Magister matematyki Politechniki Poznańskiej. Korepetytor matematyki z wieloletnim stażem. Twórca pierwszych Kursów eTrapez, które zdobyły ogromną popularność wśród studentów w całej Polsce.

Mieszka w Szczecinie. Lubi spacery po lesie, plażowanie i kajaki.

Leave a Reply

您的邮箱地址不会被公开。 必填项已用 * 标注

您的评论将与上述签名一起公开显示在我们的网站上。您可以随时更改或删除您的评论。此表格中提供的个人数据的管理员是eTrapez Usługi Edukacyjne E-Learning Krystian Karczyński。数据处理规则及相关权利在隐私政策中有描述。