Jak zbadać monotoniczność funkcji? (VIDEO)

Mój nowy filmik video jest odpowiedzią na pytanie p. Marcina w komentarzach.

Pokazuję na nim, jak zbadać monotoniczność funkcji f\left( x \right)={{\left( x-2 \right)}^{5}}{{\left( 2x+1 \right)}^{4}} i jak ważne – w tym konkretnym przykładzie – było umiejętne uporządkowanie wyniku. Przy okazji mała powtórka ze szkoły średniej i nierówności wielomianowych.

 

 

Przykład- jak powiedziałem w filmiku – dosyć nietypowy, ale się zdarza.

Tutaj jeszcze link do tej funkcji w WolframAlpha (omawiam go na końcu filmiku):

Przykład w WolframAlpha

 

Oraz do mojego darmowego Praktycznego Przewodnika do WolframAlpha, gdzie pokazuję, jak pomagać sobie nim do przykładów, które masz na studiach:

WolframAlpha Praktyczny Przewodnik

Jeśli masz jakieś pytania – zadaj je śmiało w komentarzach pod postem.

Krystian Karczyński

Założyciel i szef serwisu eTrapez.

Magister matematyki Politechniki Poznańskiej. Korepetytor matematyki z wieloletnim stażem. Twórca pierwszych Kursów eTrapez, które zdobyły ogromną popularność wśród studentów w całej Polsce.

Mieszka w Szczecinie. Lubi spacery po lesie, plażowanie i kajaki.

15 Comments

  1. Witam! czy w przykładzie 7 (zadanie domowe) jest blad? delta wynosi u mnie zero a według odpowiedzi powinna wyjść na minusie ?

  2. Jeśli pochodna rośnie to funkcja jest wypukła
    Jeśli pochodna maleje to funkcja jest wklęsła
    ale to już inna bajka

  3. Witam!!
    Mam problem z jedną sprawą, mam przykład xe^(1/x), w kursie jest że, gdy mianownik jest lub może być ujemny to nie mnożymy przez niego(kiedy przyrównuję pochodną do 0), na tym się zatrzymałem, a jak mimo to pomnożę to źle mi wychodzi

    1. Krystian Karczyński

      Witam!

      Tak, dokładnie, to jest przykład, w którym można wpaść w pułapkę. Rozwiązuję krok po kroku:

      y=x{{e}^{tfrac{1}{x}}}

      Dy:xin Rbackslash \{ 0 }

      {y}'={{left( x{{e}^{tfrac{1}{x}}} right)}^{prime }}={{left( x right)}^{prime }}{{e}^{tfrac{1}{x}}}+x{{left( {{e}^{tfrac{1}{x}}} right)}^{prime }}={{e}^{tfrac{1}{x}}}+x{{e}^{tfrac{1}{x}}}{{left( frac{1}{x} right)}^{prime }}={{e}^{tfrac{1}{x}}}+x{{e}^{tfrac{1}{x}}}left( -frac{1}{{{x}^{2}}} right)=

      ={{e}^{tfrac{1}{x}}}-frac{{{e}^{tfrac{1}{x}}}}{x}={{e}^{tfrac{1}{x}}}left( 1-frac{1}{x} right)

      D{y}':xin Rbackslash \{ 0 }

      {{e}^{tfrac{1}{x}}}left( 1-frac{1}{x} right)=0quad /:{{e}^{tfrac{1}{x}}}– możemy podzielić przez {{e}^{tfrac{1}{x}}}, bo {{e}^{tfrac{1}{x}}}jest zawsze dodatnie

      1-frac{1}{x}=0

      Tutaj jest ważny i krytyczny moment. NIE możemypomnożyć obustronnie przez x, ponieważ xprzyjmuje wartości albo dodatnie, albo ujemne. Czyli musimy zrobić tak:

      1-frac{1}{x}=0quad /cdot {{x}^{2}}– możemy pomnożyć przez x^2, bo x^2jest zawsze dodatnie (w naszej dziedzinie funkcji).

      {{x}^{2}}-x=0

      xleft( x-1 right)=0

      x=0quad vee quad x=1

      Albo tak:

      1-frac{1}{x}=0

      frac{x}{x}-frac{1}{x}=0

      frac{x-1}{x}=0

      xleft( x-1 right)=0

      x=0quad vee quad x=1

      Teraz możemy narysować przybliżony wykres, według reguł podanych w Kursie:

      wykres

      No i napisać odpowiedź:

      Odp. Funkcja y=x{{e}^{tfrac{1}{x}}}jest rosnąca dla xin left( -infty ,0 right)cup leftlangle {} right. 1,infty ),malejąca dla xin (, 0,1 rangle, osiąga minimum dla x=1.

      {{y}_{min }}left( 1 right)=1cdot {{e}^{tfrac{1}{1}}}=e

      Co potwierdza wykres funkcji y=x{{e}^{tfrac{1}{x}}}:

      xedo1przezx

  4. Witam, nurtuje mnie pewna kwestia.
    Jak odczytać, lub wyliczyć przedział w którym funkcja rośnie coraz szybciej, rośnie coraz wolniej, maleje coraz szybciej, maleje coraz wolniej?
    Pozdrawiam

    1. Krystian Karczyński

      Witam, dobre pytanie.

      Trzeba policzyć jej pochodną. Im pochodna jest większa, tym funkcja rośnie „szybciej”

      Omówiłem to w tym wykładziku, zapraszam.

    2. Dzięki za odpowiedź.

      Wiem, że:

      f ’ (x) > 0
      f ” (x) > 0
      to funkcja rośnie coraz szybciej.

      f ’ (x) > 0
      f ” (x) < 0
      to funkcja rośnie coraz wolniej.

      f ' (x) < 0
      f '' (x) < 0
      to funkcja maleje coraz szybciej.

      f ' (x) 0
      to funkcja maleje zoraz wolniej.

      Tyle z teorii, nie wiem jak wyznaczyć przedziały, w których dana funkcja właśnie rośnie coraz szybciej itd.
      Czy można liczyć na jakiś poradnik video związany z tempem zmian wartości funkcji?

    3. W ostatnim wdarły się błędy, chodzi o.

      f ’ (x) 0
      to funkcja maleje coraz szybciej.

    4. Coś nie chce dobrze tego przedstawić, ale wie Pan o co chodzi. Da się te przedziały jakoś w miarę prosto odczytać lub obliczyć?

  5. Witam Panie Krystianie, czy byłby Pan w stanie zrobić video, gdzie od deski do deski wyjaśnione jest badanie przebiegu zmienności funkcji według punktów w schemacie, z tabelką, wykresem etc, na przykładzie takiej oto np nieskomplikowanej funkcji: y=(x^+1)/(x^2-4)
    Pozdrawiam, Marcin.

  6. Kursy super , proponuje wydać książkę napisaną właśnie językiem potocznym 😀 , (oczywiście w granicach rozsądku) bo czasem naprawdę brakuje pod ręką dobrego poradnika matematycznego, żeby sobie szybko coś powtórzyć. (i nie siedzieć całego dnia przed komputerem)

    Pozdrawiam

Leave a Reply

Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *

Twój komentarz będzie dostępny publicznie na naszej stronie razem z powyższym podpisem. Komentarz możesz zmienić, lub usunąć w każdej chwili. Administratorem danych osobowych podanych w tym formularzu jest eTrapez Usługi Edukacyjne E-Learning Krystian Karczyński. Zasady przetwarzania danych oraz Twoje uprawnienia z tym związane opisane są w Polityce Prywatności.