blog

Jak zbadać monotoniczność funkcji? (VIDEO)

Krystian Karczyński

Założyciel i szef serwisu eTrapez.

Magister matematyki Politechniki Poznańskiej. Korepetytor matematyki z wieloletnim stażem. Twórca Kursów eTrapez, które zdobyły ogromną popularność wśród studentów w całej Polsce.

Mieszka koło Szczecina. Lubi spacery po lesie, plażowanie i piłkę nożną.


Mój nowy filmik video jest odpowiedzią na pytanie p. Marcina w komentarzach.

Pokazuję na nim, jak zbadać monotoniczność funkcji f\left( x \right)={{\left( x-2 \right)}^{5}}{{\left( 2x+1 \right)}^{4}} i jak ważne – w tym konkretnym przykładzie – było umiejętne uporządkowanie wyniku. Przy okazji mała powtórka ze szkoły średniej i nierówności wielomianowych.

 

 

Przykład- jak powiedziałem w filmiku – dosyć nietypowy, ale się zdarza.

Tutaj jeszcze link do tej funkcji w WolframAlpha (omawiam go na końcu filmiku):

Przykład w WolframAlpha

 

Oraz do mojego darmowego Praktycznego Przewodnika do WolframAlpha, gdzie pokazuję, jak pomagać sobie nim do przykładów, które masz na studiach:

WolframAlpha Praktyczny Przewodnik

Jeśli masz jakieś pytania – zadaj je śmiało w komentarzach pod postem.

Jedna z wielu opinii o naszych Kursach...

Jestem zadowolony z kursu. Logika zaliczona. Do łba przez prawie miesiąc nic nie nie wchodziło a tu raptem w trakcie kursu doznałem olśnienia. Dodam, iż dokonałem jego zakupu dwa dni przed ogłoszeniem wyroku i to wystarczyło, aby go odroczyć – mam nadzieję, że na zawsze. Teraz studiuję pozostałe kursy i patrzę jasno w przyszłość. Polecam go każdemu a w szczególności tym koleżankom i kolegom, którzy uważają, że wszystko jest stracone.

Szukasz korepetycji z matematyki na poziomie studiów lub szkoły średniej? A może potrzebujesz kursu, który przygotuje Cię do matury?

Jesteśmy ekipą eTrapez. Uczymy matematyki w sposób jasny, prosty i bardzo dokładny - trafimy nawet do najbardziej opornego na wiedzę.

Stworzyliśmy tłumaczone zrozumiałym językiem Kursy video do pobrania na komputer, tablet czy telefon. Włączasz nagranie, oglądasz i słuchasz, jak na korepetycjach. O dowolnej porze dnia i nocy.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Wymagane pola są oznaczone *

Twój komentarz będzie dostępny publicznie na naszej stronie razem z powyższym podpisem. Adres email nie będzie dostępny publicznie. Komentarz możesz zmienić, lub usunąć w każdej chwili. Dane osobowe zawarte w komentarzu i podpisie traktujemy zgodnie z naszą polityką prywatności.

  1. Konrad pisze:

    Witam,mam problem z rozwiązaniem zadania tego typu negative 1 half x to the power of 4 plus 5 over 3 x cubed plus 2 x squared minus 3 x plus 1 space o r a z space minus 1 fifth x to the power of 5 minus x cubed plus 4 x plus 5Po obliczeniu pochodnej, nie wiem co dalej zrobić.bb/31/d8d6936ec71f55928890bec74736.png” alt=”cube root of x” align=”middle” data-mathml=”«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mroot»«mi»x«/mi»«mn»3«/mn»«/mroot»«/math»” /> jest zbiór straight real numbers, ponieważ można obliczyć pierwiastek nieparzystego stopnia również z liczby ujemnej. Jednak definiuje się czasem, że dziedziną wyrażenia x to the power of begin inline style 1 third end style end exponent jest zbiór straight real numbers subscript plus union left curly bracket 0 right curly bracket, ze względu na postać ułamkową wykładnika. Tak też liczą dziedzinę niektóre algorytmy.

    Zapewne powyższy kalkulator wziął pod uwagę warunki: 2 minus x greater or equal than 0 oraz x squared plus x minus 6 not equal to 0. Otrzymujemy open curly brackets table attributes columnalign left end attributes row cell x less or equal than 2 end cell row cell x not equal to negative 3 logical and x not equal to 2 end cell end table close, czyli D equals open parentheses negative infinity comma negative 3 close parentheses union open parentheses negative 3 comma 2 close parentheses

    Gdybyśmy brali pod uwagę faktyczne własności pierwiastka nieparzystego stopnia, ograniczymy się do warunku x squared plus x minus 6 not equal to 0 i otrzymamy dziedzinę D equals straight real numbers backslash left curly bracket negative 3 comma 2 right curly bracket

    Trzeba przyznać, że jest to zagadnienie wyjątkowo nieprecyzyjne, jak na matematykę 😉

    07/74/4cde70440796ab21c77a684f4eb8.png” alt=”open curly brackets table attributes columnalign left end attributes row cell x plus 1 equals 0 space logical or space y minus 4 equals 0 space logical or space y equals 0 end cell row cell x equals 0 space logical or space x plus 2 equals 0 space logical or space y minus 2 equals 0 end cell end table close” align=”middle” data-mathml=”«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfenced open=¨{¨ close=¨¨»«mtable columnalign=¨left¨»«mtr»«mtd»«mi»x«/mi»«mo»+«/mo»«mn»1«/mn»«mo»=«/mo»«mn»0«/mn»«mo»§#160;«/mo»«mo»§#8744;«/mo»«mo»§#160;«/mo»«mi»y«/mi»«mo»-«/mo»«mn»4«/mn»«mo»=«/mo»«mn»0«/mn»«mo»§#160;«/mo»«mo»§#8744;«/mo»«mo»§#160;«/mo»«mi»y«/mi»«mo»=«/mo»«mn»0«/mn»«/mtd»«/mtr»«mtr»«mtd»«mi»x«/mi»«mo»=«/mo»«mn»0«/mn»«mo»§#160;«/mo»«mo»§#8744;«/mo»«mo»§#160;«/mo»«mi»x«/mi»«mo»+«/mo»«mn»2«/mn»«mo»=«/mo»«mn»0«/mn»«mo»§#160;«/mo»«mo»§#8744;«/mo»«mo»§#160;«/mo»«mi»y«/mi»«mo»-«/mo»«mn»2«/mn»«mo»=«/mo»«mn»0«/mn»«/mtd»«/mtr»«/mtable»«/mfenced»«/math»” />

    open curly brackets table attributes columnalign left end attributes row cell x equals negative 1 space logical or space y equals 4 space logical or space y equals 0 end cell row cell x equals 0 space logical or space x equals negative 2 space logical or space y equals 2 end cell end table close

    x equals negative 1 colon space minus 2 times open parentheses negative 1 close parentheses open parentheses negative 1 plus 2 close parentheses open parentheses y minus 2 close parentheses equals 0 rightwards double arrow y equals 2
    y equals 4 colon space minus 2 x open parentheses x plus 2 close parentheses open parentheses 4 minus 2 close parentheses equals 0 space rightwards double arrow space x equals 0 space logical or space x equals negative 2
    y equals 0 colon space minus 2 x open parentheses x plus 2 close parentheses open parentheses 0 minus 2 close parentheses equals 0 space rightwards double arrow space x equals 0 space logical or space x equals negative 2

    x equals 0 colon space minus 2 open parentheses 0 plus 1 close parentheses open parentheses y minus 4 close parentheses y equals 0 space rightwards double arrow space y equals 4 space logical or y equals 0x equals negative 2 colon space minus 2 open parentheses negative 2 plus 1 close parentheses open parentheses y minus 4 close parentheses y equals 0 space rightwards double arrow space y equals 4 space logical or y equals 0
    y equals 2 colon space minus 2 open parentheses x plus 1 close parentheses open parentheses 2 minus 4 close parentheses 2 equals 0 space rightwards double arrow space x equals negative 1

    Zatem punkty podejrzane o ekstremum to: open parentheses negative 1 comma 2 close parentheses comma space open parentheses 0 comma 4 close parentheses comma space open parentheses negative 2 comma 4 close parentheses comma space open parentheses 0 comma 0 close parentheses comma space open parentheses negative 2 comma 0 close parentheses

  2. Madzia pisze:

    Witam! czy w przykładzie 7 (zadanie domowe) jest blad? delta wynosi u mnie zero a według odpowiedzi powinna wyjść na minusie ?

  3. Mariusz pisze:

    Jeśli pochodna rośnie to funkcja jest wypukła
    Jeśli pochodna maleje to funkcja jest wklęsła
    ale to już inna bajka

  4. Rafał pisze:

    Witam!!
    Mam problem z jedną sprawą, mam przykład xe^(1/x), w kursie jest że, gdy mianownik jest lub może być ujemny to nie mnożymy przez niego(kiedy przyrównuję pochodną do 0), na tym się zatrzymałem, a jak mimo to pomnożę to źle mi wychodzi

    1. Krystian Karczyński pisze:

      Witam!

      Tak, dokładnie, to jest przykład, w którym można wpaść w pułapkę. Rozwiązuję krok po kroku:

      y=x{{e}^{tfrac{1}{x}}}

      Dy:xin Rbackslash { 0 }

      {y}'={{left( x{{e}^{tfrac{1}{x}}} right)}^{prime }}={{left( x right)}^{prime }}{{e}^{tfrac{1}{x}}}+x{{left( {{e}^{tfrac{1}{x}}} right)}^{prime }}={{e}^{tfrac{1}{x}}}+x{{e}^{tfrac{1}{x}}}{{left( frac{1}{x} right)}^{prime }}={{e}^{tfrac{1}{x}}}+x{{e}^{tfrac{1}{x}}}left( -frac{1}{{{x}^{2}}} right)=

      ={{e}^{tfrac{1}{x}}}-frac{{{e}^{tfrac{1}{x}}}}{x}={{e}^{tfrac{1}{x}}}left( 1-frac{1}{x} right)

      D{y}':xin Rbackslash { 0 }

      {{e}^{tfrac{1}{x}}}left( 1-frac{1}{x} right)=0quad /:{{e}^{tfrac{1}{x}}}– możemy podzielić przez {{e}^{tfrac{1}{x}}}, bo {{e}^{tfrac{1}{x}}}jest zawsze dodatnie

      1-frac{1}{x}=0

      Tutaj jest ważny i krytyczny moment. NIE możemypomnożyć obustronnie przez x, ponieważ xprzyjmuje wartości albo dodatnie, albo ujemne. Czyli musimy zrobić tak:

      1-frac{1}{x}=0quad /cdot {{x}^{2}}– możemy pomnożyć przez x^2, bo x^2jest zawsze dodatnie (w naszej dziedzinie funkcji).

      {{x}^{2}}-x=0

      xleft( x-1 right)=0

      x=0quad vee quad x=1

      Albo tak:

      1-frac{1}{x}=0

      frac{x}{x}-frac{1}{x}=0

      frac{x-1}{x}=0

      xleft( x-1 right)=0

      x=0quad vee quad x=1

      Teraz możemy narysować przybliżony wykres, według reguł podanych w Kursie:

      wykres

      No i napisać odpowiedź:

      Odp. Funkcja y=x{{e}^{tfrac{1}{x}}}jest rosnąca dla xin left( -infty ,0 right)cup left( 1,infty right)malejąca dla xin left( 0,1 right), osiąga minimum dla x=1.

      {{y}_{min }}left( 1 right)=1cdot {{e}^{tfrac{1}{1}}}=e

      Co potwierdza wykres funkcji y=x{{e}^{tfrac{1}{x}}}:

      xedo1przezx

  5. Tomasz pisze:

    Wszystko się wyjaśniło. Tempo zmienności funkcji pokazane jest w tym temacie.

  6. Tomasz pisze:

    Witam, nurtuje mnie pewna kwestia.
    Jak odczytać, lub wyliczyć przedział w którym funkcja rośnie coraz szybciej, rośnie coraz wolniej, maleje coraz szybciej, maleje coraz wolniej?
    Pozdrawiam

    1. Krystian Karczyński pisze:

      Witam, dobre pytanie.

      Trzeba policzyć jej pochodną. Im pochodna jest większa, tym funkcja rośnie “szybciej”

      Omówiłem to w tym wykładziku, zapraszam.

    2. Tomasz pisze:

      Dzięki za odpowiedź.

      Wiem, że:

      f ‘ (x) > 0
      f ” (x) > 0
      to funkcja rośnie coraz szybciej.

      f ‘ (x) > 0
      f ” (x) < 0
      to funkcja rośnie coraz wolniej.

      f ' (x) < 0
      f '' (x) < 0
      to funkcja maleje coraz szybciej.

      f ' (x) 0
      to funkcja maleje zoraz wolniej.

      Tyle z teorii, nie wiem jak wyznaczyć przedziały, w których dana funkcja właśnie rośnie coraz szybciej itd.
      Czy można liczyć na jakiś poradnik video związany z tempem zmian wartości funkcji?

    3. Tomasz pisze:

      W ostatnim wdarły się błędy, chodzi o.

      f ‘ (x) 0
      to funkcja maleje coraz szybciej.

    4. Tomasz pisze:

      Coś nie chce dobrze tego przedstawić, ale wie Pan o co chodzi. Da się te przedziały jakoś w miarę prosto odczytać lub obliczyć?

  7. Marcin pisze:

    Witam Panie Krystianie, czy byłby Pan w stanie zrobić video, gdzie od deski do deski wyjaśnione jest badanie przebiegu zmienności funkcji według punktów w schemacie, z tabelką, wykresem etc, na przykładzie takiej oto np nieskomplikowanej funkcji: y=(x^+1)/(x^2-4)
    Pozdrawiam, Marcin.

    1. Krystian Karczyński pisze:

      Na pewno, tylko takie badanie naprawdę długo trwa, myślę, że co najmniej 40 minut… Jakby co, to zapraszam do mojego Kursu, gdzie jest ono zawarte (oczywiście nie dokładnie na tym przykładzie):

      https://etrapez.pl/produkt/kurs-pochodne-i-badanie-przebiegu-zmiennosci-funkcji/

  8. Ania pisze:

    Uwielbiam pana kursy!
    Nie myślał pan o zrobieniu kursu z Badań operacyjnych?
    Pozdrawiam

  9. Piotr pisze:

    Kursy super , proponuje wydać książkę napisaną właśnie językiem potocznym 😀 , (oczywiście w granicach rozsądku) bo czasem naprawdę brakuje pod ręką dobrego poradnika matematycznego, żeby sobie szybko coś powtórzyć. (i nie siedzieć całego dnia przed komputerem)

    Pozdrawiam