blog

Jak zbadać monotoniczność funkcji? (VIDEO)

Krystian Karczyński

Założyciel i szef serwisu eTrapez.

Magister matematyki Politechniki Poznańskiej. Korepetytor matematyki z wieloletnim stażem. Twórca pierwszych Kursów eTrapez, które zdobyły ogromną popularność wśród studentów w całej Polsce.

Mieszka w Szczecinie. Lubi spacery po lesie, plażowanie i kajaki.


Mój nowy filmik video jest odpowiedzią na pytanie p. Marcina w komentarzach.

Pokazuję na nim, jak zbadać monotoniczność funkcji f\left( x \right)={{\left( x-2 \right)}^{5}}{{\left( 2x+1 \right)}^{4}} i jak ważne – w tym konkretnym przykładzie – było umiejętne uporządkowanie wyniku. Przy okazji mała powtórka ze szkoły średniej i nierówności wielomianowych.

 

 

Przykład- jak powiedziałem w filmiku – dosyć nietypowy, ale się zdarza.

Tutaj jeszcze link do tej funkcji w WolframAlpha (omawiam go na końcu filmiku):

Przykład w WolframAlpha

 

Oraz do mojego darmowego Praktycznego Przewodnika do WolframAlpha, gdzie pokazuję, jak pomagać sobie nim do przykładów, które masz na studiach:

WolframAlpha Praktyczny Przewodnik

Jeśli masz jakieś pytania – zadaj je śmiało w komentarzach pod postem.

Bestsellery

Kurs Macierze

Studia / Autor: mgr Krystian Karczyński

49,00 

Kurs Granice

Studia / Autor: mgr Krystian Karczyński

49,00 

Kurs Ekonometria

Studia / Autor: mgr Joanna Grochowska

49,00 

Kurs Pochodne i Badanie Przebiegu Zmienności Funkcji

Studia / Autor: mgr Krystian Karczyński

49,00 

Zobacz wszystkie Kursy eTrapez

Szukasz korepetycji z matematyki na poziomie studiów lub szkoły średniej? A może potrzebujesz kursu, który przygotuje Cię do matury?

Jesteśmy ekipą eTrapez. Uczymy matematyki w sposób jasny, prosty i bardzo dokładny - trafimy nawet do najbardziej opornego na wiedzę.

Stworzyliśmy tłumaczone zrozumiałym językiem Kursy video do pobrania na komputer, tablet czy telefon. Włączasz nagranie, oglądasz i słuchasz, jak na korepetycjach. O dowolnej porze dnia i nocy.

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *

Twój komentarz będzie dostępny publicznie na naszej stronie razem z powyższym podpisem. Komentarz możesz zmienić, lub usunąć w każdej chwili. Administratorem danych osobowych podanych w tym formularzu jest eTrapez Usługi Edukacyjne E-Learning Krystian Karczyński. Zasady przetwarzania danych oraz Twoje uprawnienia z tym związane opisane są w Polityce Prywatności.



  1. Konrad pisze:

    Witam,mam problem z rozwiązaniem zadania tego typu negative 1 half x to the power of 4 plus 5 over 3 x cubed plus 2 x squared minus 3 x plus 1 space o r a z space minus 1 fifth x to the power of 5 minus x cubed plus 4 x plus 5Po obliczeniu pochodnej, nie wiem co dalej zrobić.

  2. Madzia pisze:

    Witam! czy w przykładzie 7 (zadanie domowe) jest blad? delta wynosi u mnie zero a według odpowiedzi powinna wyjść na minusie ?

  3. Mariusz pisze:

    Jeśli pochodna rośnie to funkcja jest wypukła
    Jeśli pochodna maleje to funkcja jest wklęsła
    ale to już inna bajka

  4. Rafał pisze:

    Witam!!
    Mam problem z jedną sprawą, mam przykład xe^(1/x), w kursie jest że, gdy mianownik jest lub może być ujemny to nie mnożymy przez niego(kiedy przyrównuję pochodną do 0), na tym się zatrzymałem, a jak mimo to pomnożę to źle mi wychodzi

    1. Krystian Karczyński pisze:

      Witam!

      Tak, dokładnie, to jest przykład, w którym można wpaść w pułapkę. Rozwiązuję krok po kroku:

      y=x{{e}^{tfrac{1}{x}}}

      Dy:xin Rbackslash \{ 0 }

      {y}’={{left( x{{e}^{tfrac{1}{x}}} right)}^{prime }}={{left( x right)}^{prime }}{{e}^{tfrac{1}{x}}}+x{{left( {{e}^{tfrac{1}{x}}} right)}^{prime }}={{e}^{tfrac{1}{x}}}+x{{e}^{tfrac{1}{x}}}{{left( frac{1}{x} right)}^{prime }}={{e}^{tfrac{1}{x}}}+x{{e}^{tfrac{1}{x}}}left( -frac{1}{{{x}^{2}}} right)=

      ={{e}^{tfrac{1}{x}}}-frac{{{e}^{tfrac{1}{x}}}}{x}={{e}^{tfrac{1}{x}}}left( 1-frac{1}{x} right)

      D{y}’:xin Rbackslash \{ 0 }

      {{e}^{tfrac{1}{x}}}left( 1-frac{1}{x} right)=0quad /:{{e}^{tfrac{1}{x}}}– możemy podzielić przez {{e}^{tfrac{1}{x}}}, bo {{e}^{tfrac{1}{x}}}jest zawsze dodatnie

      1-frac{1}{x}=0

      Tutaj jest ważny i krytyczny moment. NIE możemypomnożyć obustronnie przez x, ponieważ xprzyjmuje wartości albo dodatnie, albo ujemne. Czyli musimy zrobić tak:

      1-frac{1}{x}=0quad /cdot {{x}^{2}}– możemy pomnożyć przez x^2, bo x^2jest zawsze dodatnie (w naszej dziedzinie funkcji).

      {{x}^{2}}-x=0

      xleft( x-1 right)=0

      x=0quad vee quad x=1

      Albo tak:

      1-frac{1}{x}=0

      frac{x}{x}-frac{1}{x}=0

      frac{x-1}{x}=0

      xleft( x-1 right)=0

      x=0quad vee quad x=1

      Teraz możemy narysować przybliżony wykres, według reguł podanych w Kursie:

      wykres

      No i napisać odpowiedź:

      Odp. Funkcja y=x{{e}^{tfrac{1}{x}}}jest rosnąca dla xin left( -infty ,0 right)cup leftlangle {} right. 1,infty ),malejąca dla xin (, 0,1 rangle, osiąga minimum dla x=1.

      {{y}_{min }}left( 1 right)=1cdot {{e}^{tfrac{1}{1}}}=e

      Co potwierdza wykres funkcji y=x{{e}^{tfrac{1}{x}}}:

      xedo1przezx

  5. Tomasz pisze:

    Wszystko się wyjaśniło. Tempo zmienności funkcji pokazane jest w tym temacie.

  6. Tomasz pisze:

    Witam, nurtuje mnie pewna kwestia.
    Jak odczytać, lub wyliczyć przedział w którym funkcja rośnie coraz szybciej, rośnie coraz wolniej, maleje coraz szybciej, maleje coraz wolniej?
    Pozdrawiam

    1. Krystian Karczyński pisze:

      Witam, dobre pytanie.

      Trzeba policzyć jej pochodną. Im pochodna jest większa, tym funkcja rośnie “szybciej”

      Omówiłem to w tym wykładziku, zapraszam.

    2. Tomasz pisze:

      Dzięki za odpowiedź.

      Wiem, że:

      f ‘ (x) > 0
      f ” (x) > 0
      to funkcja rośnie coraz szybciej.

      f ‘ (x) > 0
      f ” (x) < 0
      to funkcja rośnie coraz wolniej.

      f ' (x) < 0
      f '' (x) < 0
      to funkcja maleje coraz szybciej.

      f ' (x) 0
      to funkcja maleje zoraz wolniej.

      Tyle z teorii, nie wiem jak wyznaczyć przedziały, w których dana funkcja właśnie rośnie coraz szybciej itd.
      Czy można liczyć na jakiś poradnik video związany z tempem zmian wartości funkcji?

    3. Tomasz pisze:

      W ostatnim wdarły się błędy, chodzi o.

      f ‘ (x) 0
      to funkcja maleje coraz szybciej.

    4. Tomasz pisze:

      Coś nie chce dobrze tego przedstawić, ale wie Pan o co chodzi. Da się te przedziały jakoś w miarę prosto odczytać lub obliczyć?

  7. Marcin pisze:

    Witam Panie Krystianie, czy byłby Pan w stanie zrobić video, gdzie od deski do deski wyjaśnione jest badanie przebiegu zmienności funkcji według punktów w schemacie, z tabelką, wykresem etc, na przykładzie takiej oto np nieskomplikowanej funkcji: y=(x^+1)/(x^2-4)
    Pozdrawiam, Marcin.

    1. Krystian Karczyński pisze:

      Na pewno, tylko takie badanie naprawdę długo trwa, myślę, że co najmniej 40 minut… Jakby co, to zapraszam do mojego Kursu, gdzie jest ono zawarte (oczywiście nie dokładnie na tym przykładzie):

      https://etrapez.pl/produkt/kurs-pochodne-i-badanie-przebiegu-zmiennosci-funkcji/

  8. Ania pisze:

    Uwielbiam pana kursy!
    Nie myślał pan o zrobieniu kursu z Badań operacyjnych?
    Pozdrawiam

  9. Piotr pisze:

    Kursy super , proponuje wydać książkę napisaną właśnie językiem potocznym 😀 , (oczywiście w granicach rozsądku) bo czasem naprawdę brakuje pod ręką dobrego poradnika matematycznego, żeby sobie szybko coś powtórzyć. (i nie siedzieć całego dnia przed komputerem)

    Pozdrawiam