fbpx
blog

Kalkulator do pochodnych

Krystian Karczyński

Założyciel i szef serwisu eTrapez.

Magister matematyki Politechniki Poznańskiej. Korepetytor matematyki z wieloletnim stażem. Twórca Kursów eTrapez, które zdobyły ogromną popularność wśród studentów w całej Polsce.

Mieszka koło Szczecina. Lubi spacery po lesie, plażowanie i piłkę nożną.


Zapraszam do korzystania z przerobionego przeze mnie kalkulatora do pochodnych: Myślę, że tutaj sprawa jest bardzo jasna. Wpisujemy funkcję, klikamy na ‘Oblicz” i mamy jej pochodną. Funkcje należy wpisywać we właściwy sposób, zgodny z ogólną instrukcją wpisywania formuł matematycznych. Poniżej kilka przykładów.

Przykład 1

Chcemy obliczyć pochodną z funkcji y equals 4 x cubed. Wpisujemy w kalkulator: 4x^3. Klikamy ‘Oblicz’. Mamy wynik: y apostrophe equals 12 x squared

Przykład 2

Chcemy obliczyć pochodną z funkcji y equals ln squared open parentheses sin x plus 12 close parentheses. Wpisujemy w kalkulator: (ln(sinx+12))^2 Mamy wynik: y apostrophe equals fraction numerator 2 cos x ln open parentheses sin x plus 12 close parentheses over denominator sin x plus 12 end fraction

Przykład 3

Chcemy obliczyć pochodną z funkcji y equals fraction numerator x plus 1 over denominator open parentheses x minus 2 close parentheses open parentheses x plus 4 close parentheses end fraction. Wpisujemy w kalkulator: (x+1)/((x-2)(x+4)) Mamy wynik: y apostrophe equals horizontal ellipsis sami sprawdźcie jaki (trochę kosmiczny, ale tylko trochę) 🙂

Jedna z wielu opinii o naszych Kursach...

Szczerze powiedziawszy nie żałuję dokonanego wyboru. Przy pomocy tych kursów nie ma zagadnień, których nie dałoby się zrozumieć, ponieważ wszystko jest świetnie tłumaczone, a potem materiał można przećwiczyć na zadaniach i kończąc dany kurs ma się pewność, że ma się wszystko opanowane na 100%. Reasumując jak najbardziej polecam kursy Etrapeza

Szukasz korepetycji z matematyki na poziomie studiów lub szkoły średniej? A może potrzebujesz kursu, który przygotuje Cię do matury?

Jesteśmy ekipą eTrapez. Uczymy matematyki w sposób jasny, prosty i bardzo dokładny - trafimy nawet do najbardziej opornego na wiedzę.

Stworzyliśmy tłumaczone zrozumiałym językiem Kursy video do pobrania na komputer, tablet czy telefon. Włączasz nagranie, oglądasz i słuchasz, jak na korepetycjach. O dowolnej porze dnia i nocy.

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany.

Twój komentarz będzie dostępny publicznie na naszej stronie razem z powyższym podpisem. Adres email nie będzie dostępny publicznie. Komentarz możesz zmienić, lub usunąć w każdej chwili. Dane osobowe zawarte w komentarzu i podpisie traktujemy zgodnie z naszą polityką prywatności.

  1. :) pisze:

    Dzień dobry mam problem z policzeniem tych pochodnych :Niech y = f(x) = cos 2x, g(x) = e^((1/3)*x)a) oblicz g'(3)b) oblicz (f(x)g(x))’c) oblicz  (f(x)/g(x))’

    1. Krystian Karczyński pisze:

      a)

      g'\left( x \right) = {\left( {{e^{{\textstyle{1 \over 3}}x}}} \right)^\prime } = {e^{{\textstyle{1 \over 3}}x}} \cdot {\left( {\frac{1}{3}x} \right)^\prime } = \frac{1}{3}{e^{{\textstyle{1 \over 3}}x}}

      g'\left( 3 \right) = \frac{1}{3}{e^{{{\frac{1}{3}}} \cdot 3}} = \frac{1}{3}e = \frac{e}{3}

      b)

      f\left( x \right)g\left( x \right) = \cos 2x \cdot {e^{{\textstyle{1 \over 3}}x}} = {e^{{\textstyle{1 \over 3}}x}}\cos 2x

      {\left[ {f\left( x \right)g\left( x \right)} \right]^\prime } = {\left( {{e^{{\textstyle{1 \over 3}}x}}\cos 2x} \right)^\prime } = {\left( {{e^{{\textstyle{1 \over 3}}x}}} \right)^\prime }\cos 2x + {e^{{\textstyle{1 \over 3}}x}}{\left( {\cos 2x} \right)^\prime } =

      = {e^{{\textstyle{1 \over 3}}x}}{\left( {\frac{1}{3}x} \right)^\prime }\cos 2x + {e^{{\textstyle{1 \over 3}}x}}\left( { - \sin 2x} \right) \cdot {\left( {2x} \right)^\prime } = \frac{1}{3}{e^{{\textstyle{1 \over 3}}x}}\cos 2x - 2{e^{{\textstyle{1 \over 3}}x}}\sin 2x =

      = {e^{{\textstyle{1 \over 3}}x}}\left( {\frac{1}{3}\cos 2x - 2\sin 2x} \right)

  2. politechnika lodzka pisze:

    spoko opcja czasami korzystamy Pozdro

  3. Klaudia pisze:

    Dzień dobry, jak wprowadzic pierwiastek w kalkulator aby obejmował całe wyrażenie a nie tylko daną część?

  4. Antytalencię pisze:

    Dzień dobry.Nwm jak policzyć  pochodną f(x) =sin(2 do x).Wię piszę tutaj

  5. Witam, polecam moją darmową Lekcję do liczenia pochodnej z definicji 🙂

    A co przykładu, poleci tak:

    Wzór na pochodną w punkcie x subscript 0 z definicji to:

    f apostrophe open parentheses x subscript 0 close parentheses equals limit as increment x rightwards arrow 0 of fraction numerator f open parentheses x subscript 0 plus increment x close parentheses minus f open parentheses x subscript 0 close parentheses over denominator increment x end fraction

    W naszym przypadku f open parentheses x close parentheses equals fraction numerator 1 over denominator 5 x plus 6 end fraction .

    Mamy więc:

    f apostrophe open parentheses x subscript 0 close parentheses equals limit as increment x rightwards arrow 0 of fraction numerator begin display style fraction numerator 1 over denominator 5 open parentheses x subscript 0 plus increment x close parentheses plus 6 end fraction end style minus begin display style fraction numerator 1 over denominator 5 x subscript 0 plus 6 end fraction end style over denominator increment x end fraction equals limit as increment x rightwards arrow 0 of fraction numerator begin display style fraction numerator 1 over denominator 5 x subscript 0 plus 5 increment x plus 6 end fraction minus fraction numerator 1 over denominator 5 x subscript 0 plus 6 end fraction end style over denominator increment x end fraction equals
equals limit as increment x rightwards arrow 0 of fraction numerator begin display style fraction numerator 5 x subscript 0 plus 6 over denominator open parentheses 5 x subscript 0 plus 5 increment x plus 6 close parentheses open parentheses 5 x subscript 0 plus 6 close parentheses end fraction minus fraction numerator 5 x subscript 0 plus 5 increment x plus 6 over denominator open parentheses 5 x subscript 0 plus 5 increment x plus 6 close parentheses open parentheses 5 x subscript 0 plus 6 close parentheses end fraction end style over denominator increment x end fraction equals

    equals limit as increment x rightwards arrow 0 of fraction numerator begin display style fraction numerator 5 x subscript 0 plus 6 minus open parentheses 5 x subscript 0 plus 5 increment x plus 6 close parentheses over denominator open parentheses 5 x subscript 0 plus 5 increment x plus 6 close parentheses open parentheses 5 x subscript 0 plus 6 close parentheses end fraction end style over denominator increment x end fraction equals limit as increment x rightwards arrow 0 of fraction numerator begin display style fraction numerator 5 x subscript 0 plus 6 minus 5 x subscript 0 minus 5 increment x minus 6 over denominator open parentheses 5 x subscript 0 plus 5 increment x plus 6 close parentheses open parentheses 5 x subscript 0 plus 6 close parentheses end fraction end style over denominator increment x end fraction equals
equals limit as increment x rightwards arrow 0 of fraction numerator begin display style fraction numerator negative 5 increment x over denominator open parentheses 5 x subscript 0 plus 5 increment x plus 6 close parentheses open parentheses 5 x subscript 0 plus 6 close parentheses end fraction end style over denominator increment x end fraction equals limit as increment x rightwards arrow 0 of fraction numerator negative 5 increment x over denominator open parentheses 5 x subscript 0 plus 5 increment x plus 6 close parentheses open parentheses 5 x subscript 0 plus 6 close parentheses end fraction fraction numerator begin display style 1 end style over denominator increment x end fraction equals
equals limit as increment x rightwards arrow 0 of fraction numerator negative 5 over denominator open parentheses 5 x subscript 0 plus 5 increment x plus 6 close parentheses open parentheses 5 x subscript 0 plus 6 close parentheses end fraction equals fraction numerator negative 5 over denominator open parentheses 5 x subscript 0 plus 6 close parentheses open parentheses 5 x subscript 0 plus 6 close parentheses end fraction equals fraction numerator negative 5 over denominator open parentheses 5 x subscript 0 plus 6 close parentheses squared end fraction

    Sprawdzamy prawdziwość tego wyniku korzystając ze wzorów:

    f apostrophe open parentheses x subscript 0 close parentheses equals open parentheses fraction numerator 1 over denominator 5 x subscript 0 plus 6 end fraction close parentheses apostrophe equals open square brackets open parentheses 5 x subscript 0 plus 6 close parentheses to the power of negative 1 end exponent close square brackets apostrophe equals negative 1 times open parentheses 5 x subscript 0 plus 6 close parentheses to the power of negative 1 minus 1 end exponent open parentheses 5 x subscript 0 plus 6 close parentheses apostrophe equals
equals negative 1 open parentheses 5 x subscript 0 plus 6 close parentheses to the power of negative 2 end exponent times 5 equals fraction numerator negative 5 over denominator open parentheses 5 x subscript 0 plus 6 close parentheses squared end fraction

    Czyli wszystko gra 🙂

     

  6. Magda pisze:

    Witam,

    mam problem z rozwiązaniem takiego zadania:

    Oblicz z definicji pochodną f(x)= 1/(5x+6) w punkcie x0. Poprawność sprawdź z wzorów na pochodne.

    Z góry dziękuję za pomoc.

  7. Natalia pisze:

    Panie Krystianie, nie do końca wiem jak obliczyć pochodną z funkcji (2x^6-16x^3)/(x^3-2)^2. Mógłby Pan mi prosze pomóc? 🙂

    1. Pochodna z fraction numerator 2 x to the power of 6 minus 16 x cubed over denominator open parentheses x cubed minus 2 close parentheses squared end fraction.

      Na początku mamy tutaj dzielenie dwóch funkcji, więc zaczynamy od zastosowania wzoru: open parentheses f over g close parentheses apostrophe equals fraction numerator f apostrophe space times g space minus space f times g apostrophe over denominator g squared end fraction

      f equals 2 x to the power of 6 minus 16 x cubed – tutaj spoko, licząc pochodną wykorzystujemy liniowość, czyli pochodna z każdego składnika oddzielnie oraz dwa proste wzory: open square brackets a times f \left parenthesis x \right parenthesis close square brackets apostrophe equals a times open square brackets f \left parenthesis x \right parenthesis close square brackets apostrophe (stała przed pochodną po x-sie), a także wzór:   open parentheses x to the power of n close parentheses apostrophe equals n times x to the power of n minus 1 end exponent.

      g equals open parentheses x cubed minus 2 close parentheses squared – tutaj występuje takie coś jak złożenie funkcji. Masz jakieś wyrażenie podniesione do potęgi drugiej, czyli open parentheses co ś close parentheses to the power of n . Przy liczeniu pochodnej wykorzystujesz wzór na open parentheses x to the power of n close parentheses apostrophe equals n times x to the power of n minus 1 end exponent , z tym, że trzeba pamiętać do DOMNOŻENIU jeszcze pochodnej tego czegoś więcej, tego wyrażenia “coś”, czyli: open parentheses open parentheses co ś close parentheses to the power of n space close parentheses apostrophe equals space n times open parentheses co ś close parentheses to the power of n minus 1 end exponent times open parentheses c o ś close parentheses apostrophe

      No tu wyjdzie ostatecznie:

      open square brackets fraction numerator 2 x to the power of 6 minus 16 x cubed over denominator open parentheses x cubed minus 2 close parentheses squared end fraction close square brackets apostrophe equals fraction numerator open parentheses 2 x to the power of 6 minus 16 x cubed close parentheses apostrophe times space open parentheses x cubed minus 2 close parentheses squared space minus space open parentheses 2 x to the power of 6 minus 16 x cubed close parentheses times space open square brackets open parentheses x cubed minus 2 close parentheses squared close square brackets apostrophe over denominator open square brackets open parentheses x cubed minus 2 close parentheses squared close square brackets squared end fraction equals

      equals fraction numerator open parentheses 2 times 6 times x to the power of 5 minus 16 times 3 times x squared close parentheses times space open parentheses x cubed minus 2 close parentheses squared space minus space open parentheses 2 x to the power of 6 minus 16 x cubed close parentheses times space open square brackets 2 times open parentheses x cubed minus 2 close parentheses to the power of 1 times open parentheses x cubed minus 2 close parentheses apostrophe close square brackets over denominator open parentheses x cubed minus 2 close parentheses to the power of 4 end fraction equals

      equals fraction numerator open parentheses 12 x to the power of 5 minus 48 x squared close parentheses times open parentheses x cubed minus 2 close parentheses squared space minus space open parentheses 2 x to the power of 6 minus 16 x cubed close parentheses times space open square brackets 2 open parentheses x cubed minus 2 close parentheses times open parentheses 3 times x squared minus 0 close parentheses close square brackets over denominator open parentheses x cubed minus 2 close parentheses to the power of 4 end fraction equals

      equals fraction numerator open parentheses 12 x to the power of 5 minus 48 x squared close parentheses times open parentheses x cubed minus 2 close parentheses squared space minus space open parentheses 2 x to the power of 6 minus 16 x cubed close parentheses times space 6 x squared open parentheses x cubed minus 2 close parentheses over denominator open parentheses x cubed minus 2 close parentheses to the power of 4 end fraction equals

      equals fraction numerator open parentheses x cubed minus 2 close parentheses open square brackets open parentheses 12 x to the power of 5 minus 48 x squared close parentheses times open parentheses x cubed minus 2 close parentheses space minus space open parentheses 2 x to the power of 6 minus 16 x cubed close parentheses times space 6 x squared close square brackets over denominator open parentheses x cubed minus 2 close parentheses to the power of 4 end fraction equals

      equals fraction numerator 12 x to the power of 8 minus 24 x to the power of 5 minus 48 x to the power of 5 plus 96 x squared minus space 12 x to the power of 8 plus 96 x to the power of 5 over denominator open parentheses x cubed minus 2 close parentheses cubed end fraction equals fraction numerator 24 x to the power of 5 plus 96 x squared over denominator open parentheses x cubed minus 2 close parentheses cubed end fraction equals fraction numerator bold 24 bold x to the power of bold 2 open parentheses bold x to the power of bold 3 bold plus bold 4 close parentheses over denominator open parentheses bold x to the power of bold 3 bold minus bold 2 close parentheses to the power of bold 3 end fraction

  8. damian pisze:

    x^2+e^x/x-lnx czy pomoze ktoś ?

  9. Kamila pisze:

     WitamMam problem z pochodna x^x jak to obliczyc?

    1. Myślę, że ten filmik będzie baaardzo pomocny i wszystko wyjaśniający (chociaż przykład jest lekko inny) 🙂

       

      W Pani przypadku wyjdzie ostatecznie:

      open parentheses x to the power of x close parentheses apostrophe space equals open parentheses e to the power of ln x to the power of x end exponent close parentheses apostrophe equals space open parentheses e to the power of x times ln x end exponent close parentheses apostrophe equals open parentheses e to the power of x times ln x end exponent close parentheses times open parentheses x times ln x close parentheses apostrophe space equals

      equals open parentheses e to the power of x times ln x end exponent close parentheses times open parentheses open parentheses x close parentheses apostrophe times ln x plus x times open parentheses ln x close parentheses apostrophe close parentheses equals space open parentheses e to the power of x times ln x end exponent close parentheses times open parentheses 1 times ln x plus x times 1 over x close parentheses equals

      equals bold space straight e to the power of straight x times lnx end exponent times open parentheses lnx plus 1 close parentheses space equals space straight e to the power of lnx to the power of x end exponent times open parentheses lnx plus 1 close parentheses space equals space bold italic x to the power of bold x bold times open parentheses bold l bold n bold x bold plus bold 1 close parentheses

  10. Ania pisze:

    Cześć!Mam problem z pochodną 6x(x^2+1)^2 mógłbys wytłumaczyc krok po kroku?

  11. Ewusia pisze:

    Witam serdecznie. Mam problem z pochodną f(x)= 3/((1-x^2)(1-2x^3)). Kalkulator pokazuje odpowiedź: 6x(-5x^3+3x+1)/(mianownik^2).  A w moich obliczeniach wszystko się zgadza oprócz tego, że mam -6x. Ktoś wie co się stało z tym minusem? Proszę o odpowiedź

  12. Anna pisze:

    Witam. Mam problem z policzeniem pochodnej f(x)=ln(x)log_2(x)

  13. Agata pisze:

    Witam, nie rozumiem dlaczego pochodna z funkcji f(x)=e^2x+e^-x wychodzi e^2-e^-x a nie 2e^2x-e^-xBardzo proszę o odp 

  14. Robert pisze:

    Witammam policzyć  pochodne i nie potrafię sobie z nimi poradzić:mogę prosić o pomoc   

  15. Lidia pisze:

    dzień dobry,czy ktoś może wie w jaki sposób krok po kroku obliczyć pochodną poniższej funkcji?y equals fraction numerator x cubed sin open parentheses fourth root of 3 x end root close parentheses over denominator cos open parentheses x close parentheses end fractionBędę wdzięczna za pomoc 🙂

  16. Kasiek pisze:

    Dzień dobry,zasanowiła mnie jedna rzecz. Chcąc sprawdzić wynik pochodnej (-8cos(x)sin(x))’ znalałzam Pana kalkulator i inny. wg Pana kalkulatora wynik to (-8cos(2x)), a to wyszło w innym  (8(sinx)^2 – 8(cosx)^2) – i ja też otrzymałam taki wynik. Mogę prosić o pomoc?To całe zadanie jaki muszę obliczyć: -8cos(x)sin(x)+(e^(x^(1/2))(1- (1/x^(1/2))) /(4x))”Podzieliłam” je na 2 zgodnie z właściwościami pochodnych – [f(x)+g(x)]’ = f'(x)+g'(x) 

    1. “wg Pana kalkulatora wynik to (-8cos(2x)), a to wyszło w innym  (8(sinx)^2 – 8(cosx)^2) – i ja też otrzymałam taki wynik.”

      Pani Kasiu – oba wyniki są poprawne 🙂 Policzyła Pani wszystko prawidłowo.

      Kalkulator zamieszczony na Blogu po prostu dodatkowo dokonał jeszcze jedne przekształcenie, wykorzystując rozpisanie wzoru cos \left parenthesis 2 x \right parenthesis ze szkoły średniej (jak pamiętamy, tam były jego 3 wersje)

      cos \left parenthesis 2 x \right parenthesis equals cos squared x minus sin squared x space equals space 2 cos squared x minus 1 space equals space 1 minus 2 sin squared x – wykorzystana została wersja pierwsza.

      Rozpisując Pani wynik: 

      8 sin squared x space – space 8 cos squared x equals negative 8 times open parentheses negative sin squared x space plus cos squared x close parentheses equals negative 8 open parentheses bold italic c bold italic o bold italic s to the power of bold 2 bold italic x bold minus bold italic s bold italic i bold italic n to the power of bold 2 bold italic x close parentheses equals negative 8 bold italic c bold italic o bold italic s bold \left parenthesis bold 2 bold italic x bold \right parenthesis

  17. Bubi pisze:

    mam problem z pochodną funkcji : left parenthesis 1 plus square root of x \right parenthesis to the power of ln square root of x end exponent

  18. kati pisze:

    square root of 1 minus 3 x hat 2 end root equals… ; 2 to the power of 3 x plus 4 end exponent ln x equals
… proszę o pomoc

    1. kati pisze:

      oczywiście polecenie policz pochodne 

    2. 1. y equals square root of 1 minus 3 x squared end root

      Stosuję wzór open parentheses square root of triangle close parentheses apostrophe equals fraction numerator 1 over denominator 2 square root of triangle end fraction times triangle apostrophe

      y apostrophe equals fraction numerator 1 over denominator 2 square root of 1 minus 3 x squared end root end fraction times open parentheses 1 minus 3 x squared close parentheses apostrophe equals fraction numerator 1 over denominator 2 square root of 1 minus 3 x squared end root end fraction times open parentheses 0 minus 3 times 2 x close parentheses equals

      fraction numerator negative 6 x over denominator 2 square root of 1 minus 3 x squared end root end fraction equals negative fraction numerator 3 x over denominator square root of 1 minus 3 x squared end root end fraction

      2. y equals 2 to the power of 3 x plus 4 end exponent times ln x

      Stosuję wzory: open parentheses u times v close parentheses apostrophe equals u apostrophe times v plus u times v apostrophe oraz open parentheses 2 to the power of triangle close parentheses apostrophe equals 2 to the power of triangle times ln 2 times triangle apostrophe

      y apostrophe equals open parentheses 2 to the power of 3 x plus 4 end exponent close parentheses apostrophe times ln x plus 2 to the power of 3 x plus 4 end exponent times open parentheses ln x close parentheses apostrophe equals 2 to the power of 3 x plus 4 end exponent times ln 2 times open parentheses 3 x plus 4 close parentheses apostrophe times ln x plus 2 to the power of 3 x plus 4 end exponent times 1 over x equals

      2 to the power of 3 x plus 4 end exponent times ln 2 times open parentheses 3 plus 0 close parentheses times ln x plus 2 to the power of 3 x plus 4 end exponent times 1 over x equals 2 to the power of 3 x plus 4 end exponent times open parentheses 3 ln 2 times ln x plus 1 over x close parentheses

  19. Kamil pisze:

    3 ln hat 5 \left parenthesis 3 over x to the power of 4 minus x \right parenthesisWitam mam problem z obliczeniem tej pochodnej mógłby mi ktoś wytłumaczyć jak to zrobić ?

    1. y equals 3 ln to the power of 5 open parentheses 3 over x to the power of 4 minus x close parentheses

      Stosuję wzory open parentheses C times f open parentheses x close parentheses close parentheses apostrophe equals C times f apostrophe open parentheses x close parentheses oraz open parentheses triangle to the power of 5 close parentheses apostrophe equals 5 times triangle to the power of 4 times triangle apostrophe

      y apostrophe equals 3 times open square brackets ln to the power of 5 open parentheses 3 over x to the power of 4 minus x close parentheses close square brackets apostrophe equals 3 times 5 times ln to the power of 4 open parentheses 3 over x to the power of 4 minus x close parentheses times open parentheses 3 over x to the power of 4 minus x close parentheses apostrophe equals

      15 ln to the power of 4 open parentheses 3 over x to the power of 4 minus x close parentheses times open parentheses 3 times x to the power of negative 4 end exponent minus x close parentheses apostrophe equals 15 ln to the power of 4 open parentheses 3 over x to the power of 4 minus x close parentheses times open parentheses 3 times open parentheses negative 4 close parentheses times x to the power of negative 5 end exponent minus 1 close parentheses equals

      15 ln to the power of 4 open parentheses 3 over x to the power of 4 minus x close parentheses times open parentheses negative 12 over x to the power of 5 minus 1 close parentheses equals negative 15 times open parentheses 12 over x to the power of 5 plus 1 close parentheses times ln to the power of 4 open parentheses 3 over x to the power of 4 minus x close parentheses

  20. Mati pisze:

    w kalkulatorze wychodzą bzdury gdy liczy się pochodną pierwiastków:np po wpisaniu (x^2)^-2 czyli square root of cross times squared end root (pochodna to oczywiście 1) wychodzi

    1. Tutaj akurat kalkulator dobrze policzył pochodną 🙂

      Wpisana formuła “(x^2)^-2” (potęga (-2) ) nie oznacza pierwiastka, tylko inna potęgę, a mianowicie:
      open parentheses x squared close parentheses to the power of negative 2 end exponent equals open parentheses 1 over x squared close parentheses squared equals 1 over x to the power of 4 equals x to the power of negative 4 end exponent – minus w potędze odwraca podstawę 🙂

      Aby wprowadzić pierwiastek, trzeba wziąć potęgę ułamkową, czyli powinien Pan wpisać “”(x^2)^(1/2)” 

      Wtedy pochodna:

      open parentheses square root of x squared end root close parentheses apostrophe equals open parentheses fraction numerator 1 over denominator 2 square root of x squared end root end fraction close parentheses times open parentheses x squared close parentheses apostrophe equals fraction numerator 2 x over denominator 2 square root of x squared end root end fraction equals fraction numerator x over denominator square root of x squared end root end fraction equals fraction numerator x over denominator open vertical bar x close vertical bar end fraction equals open curly brackets table attributes columnalign \left end attributes row cell 1 space space space space space space d l a space x greater or equal than 0 end cell row cell negative 1 space space space d l a space x less than 0 end cell end table close

  21. Paulina pisze:

    Witam Panie Krzysztofie,czy mógłby mi Pan pomóc z obliczeniem pochodnej:f \left parenthesis x \right parenthesis equals fifth root of fraction numerator cos squared x over denominator x cubed minus 3 x end fraction end root

    1. y equals fifth root of fraction numerator cos squared x over denominator x cubed minus 3 x end fraction end root

      Stosuję wzory dla pochodnej ułamku:

      open parentheses u over v close parentheses apostrophe equals fraction numerator u apostrophe times v minus u times v apostrophe over denominator v squared end fraction oraz pochodnej funkcji złożonej: 

      open square brackets f open parentheses g open parentheses x close parentheses close parentheses close square brackets apostrophe equals f apostrophe open parentheses g close parentheses times g apostrophe open parentheses x close parentheses

      y equals fifth root of fraction numerator cos squared x over denominator x cubed minus 3 x end fraction end root equals open parentheses fraction numerator cos squared x over denominator x cubed minus 3 x end fraction close parentheses to the power of 1 fifth end exponent. Wtedy

      y apostrophe equals 1 fifth times open parentheses fraction numerator cos squared x over denominator x cubed minus 3 x end fraction close parentheses to the power of 1 fifth minus 1 end exponent times open parentheses fraction numerator cos squared x over denominator x cubed minus 3 x end fraction close parentheses apostrophe equals 1 fifth times open parentheses fraction numerator cos squared x over denominator x cubed minus 3 x end fraction close parentheses to the power of negative 4 over 5 end exponent times

      times fraction numerator open parentheses cos squared x close parentheses apostrophe times open parentheses x cubed minus 3 x close parentheses minus cos squared x times open parentheses x cubed minus 3 x close parentheses apostrophe over denominator open parentheses x cubed minus 3 x close parentheses squared end fraction equals 1 fifth times fraction numerator 1 over denominator fifth root of open parentheses \begin display style fraction numerator cos squared x over denominator x cubed minus 3 x end fraction end style close parentheses to the power of 4 end root end fraction times

      times fraction numerator 2 cos x times open parentheses cos x close parentheses apostrophe times open parentheses x cubed minus 3 x close parentheses minus cos squared x times open parentheses 3 x squared minus 3 close parentheses over denominator open parentheses x cubed minus 3 x close parentheses squared end fraction equals

      1 fifth times fifth root of open parentheses fraction numerator x cubed minus 3 x over denominator cos squared x end fraction close parentheses to the power of 4 end root times fraction numerator 2 cos x times open parentheses negative sin x close parentheses times open parentheses x cubed minus 3 x close parentheses minus cos squared x times open parentheses 3 x squared minus 3 close parentheses over denominator open parentheses x cubed minus 3 x close parentheses squared end fraction equals

      1 fifth times fraction numerator fifth root of open parentheses x cubed minus 3 x close parentheses to the power of 4 end root over denominator fifth root of open parentheses cos squared x close parentheses to the power of 4 end root end fraction times fraction numerator negative cos x times open square brackets 2 sin x times open parentheses x cubed minus 3 x close parentheses plus cos x times open parentheses 3 x squared minus 3 close parentheses close square brackets over denominator fifth root of open parentheses open parentheses x cubed minus 3 x close parentheses squared close parentheses to the power of 5 end root end fraction equals

      equals negative 1 fifth times fraction numerator fifth root of open parentheses x cubed minus 3 x close parentheses to the power of 4 end root over denominator fifth root of cos to the power of 8 x end root end fraction times fraction numerator fifth root of cos to the power of 5 x end root times open square brackets 2 times open parentheses x cubed minus 3 x close parentheses times sin x plus open parentheses 3 x squared minus 3 close parentheses times cos x close square brackets over denominator fifth root of open parentheses x cubed minus 3 x close parentheses to the power of 10 end root end fraction equals

      equals negative 1 fifth times fraction numerator 2 times open parentheses x cubed minus 3 x close parentheses times sin x plus open parentheses 3 x squared minus 3 close parentheses times cos x over denominator fifth root of open parentheses x cubed minus 3 x close parentheses to the power of 6 times cos cubed x end root end fraction

  22. Mike pisze:

    Dzień dobry, chciałem zwrócić uwagę na błąd, gdy w pochodnej funkcji sqrt(3^3 -2) wynikiem jest ((3^x)log(3))/(2(sqrt(3x-2))), gdzie w miejscu log powinno być ln.Pozdrawiam

  23. Justyna pisze:

    Witam, w ostatniej lekcji z kursu pochodnych robił Pan przykład x/lnx, Moje pytanie brzmi skąd w wykresie 2 pochodnej wziął się punkt 1. wklejam juz policzoną 2 pochodną

  24. Mateusz pisze:

    Dzień dobry Panie Krystianie!Czy mógłby mi Pan pomóc w obliczeniu pochodnej z: left parenthesis sin x plus cos x \right parenthesis to the power of 5* fifth root of vertical line a r c sin x plus a r c cos x vertical line end root?

    1. y equals open parentheses sin x plus cos x close parentheses to the power of 5 times fifth root of open vertical bar a r s c i n x plus a r c cos x close vertical bar end root

      Wiadomo, że pochodna liczby stałej wynosi zero:

      C apostrophe equals 0, o ile C equals c o n s t space open parentheses s t a ł a close parentheses

      Obliczymy:

      open parentheses a r c sin x plus a r c cos x close parentheses apostrophe equals open parentheses a r c sin x close parentheses apostrophe plus open parentheses a r c cos x close parentheses apostrophe equals fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction plus open parentheses negative fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction close parentheses equals 0

      Stąd mamy, że a r c sin x plus a r c cos x equals C

      Liczba stała nie zależy od x. Obliczymy ją:

      a r c sin x plus a r c cos x equals C equals a r c sin 0 plus a r c cos 0 equals 0 plus \pi over 2 equals \pi over 2

      Wtedy funkcja

      y equals open parentheses sin x plus cos x close parentheses to the power of 5 times fifth root of open vertical bar a r c sin x plus a r c cos x close vertical bar end root equals fifth root of \pi over 2 end root times open parentheses sin x plus cos x close parentheses to the power of 5,

      i jej pochodna

      (wg wzoru dla funkcji złożonej:  open parentheses triangle to the power of 5 close parentheses apostrophe equals 5 triangle to the power of 4 times open parentheses triangle close parentheses apostrophe   )

      wynosi:

      y apostrophe equals fifth root of \pi over 2 end root times 5 times open parentheses sin x plus cos x close parentheses to the power of 4 times open parentheses sin x plus cos x close parentheses apostrophe equals

      fifth root of \pi over 2 end root times open parentheses sin x plus cos x close parentheses to the power of 4 times open parentheses cos x minus sin x close parentheses

       

  25. Kasia pisze:

    Witam, potrzebuję obliczyć pierwszą pochodną funkcji. Jak to zrobić?i(x) = 3e^2x *lnx

    1. y equals 3 e to the power of 2 x end exponent times ln x

      Stosuję wzory: open parentheses C times y close parentheses apostrophe equals C times y apostrophe (gdzie C – stała) oraz open parentheses u times v close parentheses apostrophe equals u apostrophe times v plus u times v apostrophe, a także

      open parentheses e to the power of triangle close parentheses apostrophe equals e to the power of triangle times triangle apostrophe

      y apostrophe equals 3 times open square brackets open parentheses e to the power of 2 x end exponent close parentheses apostrophe times ln x plus e to the power of 2 x end exponent times open parentheses ln x close parentheses apostrophe close square brackets equals 3 times open square brackets e to the power of 2 x end exponent times open parentheses 2 x close parentheses apostrophe times ln x plus e to the power of 2 x end exponent times 1 over x close square brackets equals

      3 times open parentheses e to the power of 2 x end exponent times 2 times ln x plus e to the power of 2 x end exponent times 1 over x close parentheses equals 3 times e to the power of 2 x end exponent times open parentheses 2 ln x plus 1 over x close parentheses

  26. Leszek pisze:

     Witam,nie wiem czy kalkulator dobrze liczy ale wychodzi że (ln(x))’ = 1/x i to jest dobrze ale wpisując ln(2x) podaje wynik też 1/x czy to jest aby dobrze? Czy nie powinno być 2/x ?Proszę o szybką odpowiedź.

    1. Tutaj wynik jest poprawny, pochodna open parentheses ln \left parenthesis 2 x \right parenthesis close parentheses apostrophe equals 1 over x
      Bierze się to z tego, że jest to złożenie dwóch funkcji  – nie ma Pan samego “x” w logarytmie tylko coś więcej. Przy liczeniu takich pochodnych, najpierw robimy pochodną tej funkcji “zewnętrznej” i domnażamy do niej pochodną funkcji w środku, tej “wewnętrznej”. 

      Ogólnie na wzorach to idzie tak: left parenthesis f \left parenthesis g \left parenthesis x \right parenthesis \right parenthesis apostrophe space equals space f apostrophe \left parenthesis g \left parenthesis x \right parenthesis \right parenthesis space times space g apostrophe \left parenthesis x \right parenthesis

      Przy naszych danych to pójdzie tak: open parentheses ln \left parenthesis increment \right parenthesis close parentheses apostrophe equals 1 over increment times increment apostrophe  , gdzie za ten increment biorę funkcję wewnętrzną.

      Stąd ostatecznie: open parentheses ln \left parenthesis 2 x \right parenthesis close parentheses apostrophe equals fraction numerator 1 over denominator 2 x end fraction times open parentheses 2 x close parentheses apostrophe equals fraction numerator 1 over denominator 2 x end fraction times 2 times 1 equals fraction numerator 2 over denominator 2 x end fraction equals 1 over x

  27. Michał pisze:

    Witam mógłby mi ktoś pomóc obliczyć pochodną funkcji y=cube root of x to the power of 5 end root ln x

    1. y equals cube root of x to the power of 5 end root times ln x equals x to the power of 5 over 3 end exponent times ln x

      Stosuję wzór: open parentheses u times v close parentheses apostrophe equals u apostrophe times v plus u times v apostrophe

      y apostrophe equals open parentheses x to the power of 5 over 3 end exponent close parentheses apostrophe times ln x plus x to the power of 5 over 3 end exponent times open parentheses ln x close parentheses apostrophe equals 5 over 3 times x to the power of 5 over 3 minus 1 end exponent times ln x plus x to the power of 5 over 3 end exponent times 1 over x equals

      5 over 3 times x to the power of 2 over 3 end exponent times ln x plus x to the power of \begin display style 5 over 3 end style end exponent over x equals 5 over 3 times x to the power of 2 over 3 end exponent times ln x plus x to the power of 5 over 3 minus 1 end exponent equals 5 over 3 times x to the power of 2 over 3 end exponent times ln x plus x to the power of 2 over 3 end exponent equals

      x to the power of 2 over 3 end exponent times open parentheses 5 over 3 ln x plus 1 close parentheses equals cube root of x squared end root times open parentheses 5 over 3 ln x plus 1 close parentheses

  28. marco pisze:

    jak obliczyć pochodna funkcjiy= 4x^1/3 * (5 + 2*4^3^x)/x^2 + 1

    1. y equals fraction numerator 4 cube root of x times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses over denominator x squared plus 1 end fraction equals 4 times fraction numerator cube root of x times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses over denominator x squared plus 1 end fraction

      Stosuję wzory:

      open parentheses u over v close parentheses apostrophe equals fraction numerator u apostrophe v minus u v apostrophe over denominator v squared end fraction oraz (pochodna funkcji złożonej) open parentheses 4 to the power of triangle close parentheses apostrophe equals 4 to the power of triangle times ln 4 times open parentheses triangle close parentheses apostrophe, a także

      open parentheses u times v close parentheses apostrophe equals u apostrophe v plus u v apostrophe

      y apostrophe equals 4 times fraction numerator open square brackets cube root of x times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses close square brackets apostrophe times open parentheses x squared plus 1 close parentheses minus cube root of x times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses times open parentheses x squared plus 1 close parentheses apostrophe over denominator open parentheses x squared plus 1 close parentheses squared end fraction equals

      4 times fraction numerator open square brackets open parentheses cube root of x close parentheses apostrophe times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses plus cube root of x times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses apostrophe close square brackets times open parentheses x squared plus 1 close parentheses minus cube root of x times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses times open parentheses 2 x plus 0 close parentheses over denominator open parentheses x squared plus 1 close parentheses squared end fraction equals

      4 times fraction numerator open square brackets open parentheses x to the power of \begin display style 1 third end style end exponent close parentheses apostrophe times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses plus cube root of x times open parentheses 0 plus 2 times 4 to the power of 3 to the power of x end exponent times ln 4 times open parentheses 3 to the power of x close parentheses apostrophe close parentheses close square brackets times open parentheses x squared plus 1 close parentheses minus cube root of x times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses times 2 x over denominator open parentheses x squared plus 1 close parentheses squared end fraction equals

      4 times fraction numerator open square brackets \begin display style 1 third end style x to the power of negative \begin display style 2 over 3 end style end exponent times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses plus x to the power of \begin display style 1 third end style end exponent times 2 times 4 to the power of 3 to the power of x end exponent times ln 4 times 3 to the power of x times ln 3 close square brackets times open parentheses x squared plus 1 close parentheses minus x to the power of \begin display style 1 third end style end exponent times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses times 2 x over denominator open parentheses x squared plus 1 close parentheses squared end fraction equals

      4 times fraction numerator \begin display style 1 third end style x to the power of negative \begin display style 2 over 3 end style end exponent times open square brackets 5 plus 2 times 4 to the power of 3 to the power of x end exponent plus 3 x times 2 times 4 to the power of 3 to the power of x end exponent times 3 to the power of x times ln 4 times ln 3 close square brackets times open parentheses x squared plus 1 close parentheses minus \begin display style 1 third end style x to the power of negative \begin display style 2 over 3 end style end exponent times 3 x times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses times 2 x over denominator open parentheses x squared plus 1 close parentheses squared end fraction equals

      4 times 1 third x to the power of negative 2 over 3 end exponent times fraction numerator open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent plus 6 x times 4 to the power of 3 to the power of x end exponent times 3 to the power of x times ln 4 times ln 3 close parentheses times open parentheses x squared plus 1 close parentheses minus 6 x squared times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses over denominator open parentheses x squared plus 1 close parentheses squared end fraction equals

      4 over 3 x to the power of negative 2 over 3 end exponent times fraction numerator 5 x squared plus 5 plus 2 x squared times 4 to the power of 3 to the power of x end exponent plus 2 times 4 to the power of 3 to the power of x end exponent plus 6 x cubed times 4 to the power of 3 to the power of x end exponent times 3 to the power of x times ln 4 times ln 3 plus 6 x times 4 to the power of 3 to the power of x end exponent times 3 to the power of x times ln 4 times ln 3 minus 30 x squared minus 12 x squared times 4 to the power of 3 to the power of x end exponent over denominator open parentheses x squared plus 1 close parentheses squared end fraction equals

      4 over 3 times fraction numerator negative 25 x squared plus 5 minus 10 x squared times 4 to the power of 3 to the power of x end exponent plus 2 times 4 to the power of 3 to the power of x end exponent plus 6 x cubed times 4 to the power of 3 to the power of x end exponent times 3 to the power of x times ln 4 times ln 3 plus 6 x times 4 to the power of 3 to the power of x end exponent times ln 4 times ln 3 over denominator x to the power of \begin display style 2 over 3 end style end exponent times open parentheses x squared plus 1 close parentheses squared end fraction

       

  29. Klaudia pisze:

    Witam, jak obliczyć pochodną funkcji f(x)= e^(2x+1)/(x-2)

  30. Sylwia pisze:

    Witam, czy mógłby mi Pan wytłumaczyć jak rozwiązać taką pochodną:f(x)=xsinxlnx ?z góry dziękuje i pozdrawiam 🙂

    1. f open parentheses x close parentheses equals x times sin x times ln x

      Znany jest wzór dla pochodnej iloczynu:

      open parentheses u times v close parentheses apostrophe equals u apostrophe v plus u v apostrophe

      Spróbujemy otrzymać wzór dla iloczynu trzech czynników:

      open parentheses u times v times w close parentheses apostrophe equals open square brackets u times open parentheses v times w close parentheses close square brackets apostrophe equals u apostrophe times open parentheses v times w close parentheses plus u times open parentheses v times w close parentheses apostrophe equals u apostrophe times v times w plus u times open parentheses v apostrophe times w plus v times w apostrophe close parentheses equals

      u apostrophe times v times w plus u times v apostrophe times w plus u times v times w apostrophe

      Wtedy:

      f apostrophe open parentheses x close parentheses equals open parentheses x times sin x times ln x close parentheses apostrophe equals x apostrophe times sin x times ln x plus x times open parentheses sin x close parentheses apostrophe times ln x plus x times sin x times open parentheses ln x close parentheses apostrophe equals

      1 times sin x times ln x plus x times cos x times ln x plus x times sin x times 1 over x equals sin x times ln x plus x times cos x times ln x plus sin x

  31. radek pisze:

    (2x-1)^4=8(2x-1)^3 dlaczego tak????

  32. Jack pisze:

    Jak to obliczyć ? f(x)= open parentheses fraction numerator 1 over denominator 2 square root of x end fraction minus 1 close parentheses x squared

  33. Iza pisze:

    f(x)=x^2*(x-2)^2Wytłumaczysz mi jak to policzyłeś, trochę inaczej mam rozpisane z zajęć i się pogubiłam…? Z góry dziękuję 🙂

    1. f open parentheses x close parentheses equals x squared times open parentheses x minus 2 close parentheses squared

      Stosuję wzór:

      open parentheses u times v close parentheses apostrophe equals u apostrophe v plus u v apostrophe oraz (pochodna funkcji złożonej) open parentheses triangle squared close parentheses apostrophe equals 2 triangle times open parentheses triangle close parentheses apostrophe

      f apostrophe open parentheses x close parentheses equals open square brackets x squared times open parentheses x minus 2 close parentheses squared close square brackets apostrophe equals open parentheses x squared close parentheses apostrophe times open parentheses x minus 2 close parentheses squared plus x squared times open square brackets open parentheses x minus 2 close parentheses squared close square brackets apostrophe equals 2 x times open parentheses x minus 2 close parentheses squared plus

      plus x squared times 2 times open parentheses x minus 2 close parentheses times open parentheses x minus 2 close parentheses apostrophe equals 2 x times open parentheses x squared minus 4 x plus 4 close parentheses plus 2 x squared times open parentheses x minus 2 close parentheses times open parentheses 1 minus 0 close parentheses equals

      2 x cubed minus 8 x squared plus 8 x plus 2 x cubed minus 4 x squared equals 4 x cubed minus 12 x squared plus 8 x

      Można było inaczej:

      f open parentheses x close parentheses equals x squared times open parentheses x minus 2 close parentheses squared equals open square brackets x times open parentheses x minus 2 close parentheses close square brackets squared equals open parentheses x squared minus 2 x close parentheses squared equals x to the power of 4 minus 4 x cubed plus 4 x squared

      Wtedy:

      f apostrophe open parentheses x close parentheses equals open parentheses x to the power of 4 minus 4 x cubed plus 4 x squared close parentheses apostrophe equals 4 x cubed minus 4 times 3 x squared plus 4 times 2 x equals 4 x cubed minus 12 x squared plus 8 x

    1. michalaczek pisze:

      czy moge zapisac w postaci log subscript e e to the power of 5 equals 5  ???

  34. michalaczek pisze:

    1) f(x)=e to the power of negative x end exponent2) f(x)=ln to the power of 8 x3) f(x)=ln(5 x to the power of 4 minus x plus 9)

  35. michalaczek pisze:

    odp do f(x)=square root of 4 x to the power of 7 plus 1 end root  to  fraction numerator 14 x cubed over denominator square root of 4 x to the power of 7 plus 1 end root end fraction   ???

    1. f open parentheses x close parentheses equals square root of 4 x to the power of 7 plus 1 end root

      Stosuję wzór na pochodne funkcji złożonej:

      open parentheses square root of triangle close parentheses apostrophe equals fraction numerator 1 over denominator 2 square root of triangle end fraction times open parentheses triangle close parentheses apostrophe

      f apostrophe open parentheses x close parentheses equals fraction numerator 1 over denominator 2 square root of 4 x to the power of 7 plus 1 end root end fraction times open parentheses 4 x to the power of 7 plus 1 close parentheses apostrophe equals fraction numerator 4 times 7 x to the power of 6 plus 0 over denominator 2 square root of 4 x to the power of 7 plus 1 end root end fraction equals fraction numerator 28 x to the power of 6 over denominator 2 square root of 4 x to the power of 7 plus 1 end root end fraction equals fraction numerator 14 x to the power of 6 over denominator square root of 4 x to the power of 7 plus 1 end root end fraction

    1. Tutaj jest do policzenia pochodna funkcji złożonej, czyli argumentem nie jest sam „x” tylko coś więcej, nie ma po prostu e to the power of x tylko e to the power of c o ś end exponent
      Postępujemy jak zawsze w takich przypadkach, czyli: pochodna tego co „na zewnątrz” pomnożyć razy pochodna funkcji wewnętrznej (coś więcej niż sam „x”), czyli jakby open parentheses e to the power of increment close parentheses apostrophe equals e to the power of increment times increment apostrophe .

      Stąd: open parentheses e to the power of 8 x end exponent close parentheses apostrophe equals e to the power of 8 x end exponent times open parentheses 8 x close parentheses apostrophe equals e to the power of 8 x end exponent times 8 times 1 equals 8 e to the power of 8 x end exponent 

  36. michalaczek pisze:

    square root of blank end root da wpisać się do kalkulatora?

    1. Tak, “pierwiastek” można wpisać na dwa sposoby

      1) wpisując: \sqrt(…)  , np \sqrt(2x) oznacza square root of 2 x end root

      2) wpisując potęgę ułamkową , tzn. (…)^(1/2)  , np (x)^(1/2) oznacza square root of x

  37. michalaczek pisze:

    jak rozwiazac:1) f(x)=bevelled fraction numerator a r c space cos space x over denominator x end fraction2) f(x)=bevelled fraction numerator a r c space sin space x over denominator x end fractionz góry bardzo dziękuje!

    1. 1. f open parentheses x close parentheses equals fraction numerator a r c cos x over denominator x end fraction

      Skorzystam ze wzoru:

      open parentheses u over v close parentheses apostrophe equals fraction numerator u apostrophe v minus u v apostrophe over denominator v squared end fraction

      f apostrophe open parentheses x close parentheses equals open parentheses fraction numerator a r c cos x over denominator x end fraction close parentheses apostrophe equals fraction numerator open parentheses a r c cos x close parentheses apostrophe times x minus a r c cos x times open parentheses x close parentheses apostrophe over denominator x squared end fraction equals

      fraction numerator negative \begin display style fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction end style times x minus a r c cos x times 1 over denominator x squared end fraction equals negative fraction numerator \begin display style fraction numerator x over denominator square root of 1 minus x squared end root end fraction end style plus a r c cos x over denominator x squared end fraction equals

      negative fraction numerator x plus square root of 1 minus x squared end root times a r c cos x over denominator x squared times square root of 1 minus x squared end root end fraction

  38. Karolina pisze:

    czy mógłby ktoś mi pomóc z rozwiązaniem pochodnej: (x^2)/(2-x) ?
    Kalkulator wylicza to jako: [-(x-4)x]/[(x-2)^2]
    Ja wyliczam już czwarty raz i za każdym wychodzi mi taki sam wynik [(4-x)x]/[(2-x)^2], niestety inny niż kalkulatora 🙁
    proszę o pomoc!

    1. Joanna Grochowska pisze:

      Oba wyniki są poprawne i oba są identyczne 🙂

      Po prostu ten z kalkulatora wyliczony “wyciągnął” jeszcze minusy z każdego z wyrażeń.

      Przekształcę więc je tak, że na górze wciągnę go z powrotem, a na dole jakby go wyciągnę jeszcze raz (bo podniesiony do kwadratu się zredukował). Proszę popatrzeć:

      \displaystyle \frac{{-(x-4)x}}{{{{{(x-2)}}^{2}}}}=\frac{{(-x+4)x}}{{{{{\left[ {-(-x+2)} \right]}}^{2}}}}=\frac{{(4-x)x}}{{{{{(-1)}}^{2}}{{{(2-x)}}^{2}}}}=\frac{{(4-x)x}}{{{{{(2-x)}}^{2}}}}

      No i wyszedł Pani wynik 🙂

    2. Karolina pisze:

      jeju, rzeczywiście, ale głupi błąd! 😛
      Bardzo dziękuje, juz rozumiem 😉

  39. Julia pisze:

    Witam, nie rozumiem dlaczego pochodna ln2x^2 to y'(x) = (2 log(2 x))/x

  40. Matematyk pisze:

    Bardzo pomocny kalkulator pochodnych funkcji, przydatny szczególnie do sprawdzania wyników.

  41. Paulina pisze:

    Witam 🙂 Dlaczego pochodna z e^(2^x)=2^x*e^(2^x)*log2?

    1. Tutaj jest do policzenia pochodna funkcji złozonej, czyli argumentem nie jest sam „x” tylko coś więcej, nie ma po prostu e to the power of x tylko e to the power of c o ś end exponent.
      Postępujemy jak zawsze w takich przypadkach, czyli: pochodna tego co „na zewnątrz” pomnożyć razy pochodna funkcji wewnętrznej (coś więcej niż sam „x”), czyli jakby open parentheses e to the power of increment close parentheses apostrophe equals e to the power of increment times increment apostrophe

      Stąd: open parentheses e to the power of 2 to the power of x end exponent close parentheses apostrophe equals e to the power of 2 to the power of x end exponent times open parentheses 2 to the power of x close parentheses apostrophe equals e to the power of 2 to the power of x end exponent times 2 to the power of x times ln 2 , gdyż wprost z wzorku  open parentheses a to the power of x close parentheses apostrophe equals a to the power of x times ln a .

  42. studentekonomi pisze:

    Witam. Mam problem z zadaniem: f(x1,x2)=1/2ln(5×1^2-2×2). Jak mogę narysować krzywe w punktach 0, 1 i 2? Wytyczenie pochodnej i całki również by się przydało…

  43. Iulia pisze:

    Dzień dobry, bardzo prosiłabym o pomóc z przykładem [((arctgX^2)^3)/((e^3)*x+3^x)]^(arctg(x^4-ln(2x^8+1) Czyli iloraz w tym kwadratowym nawiasie podnosimy do potęgi i z tego wszystkiego policzyć pochodną…wychodzą mi kosmiczne rozwiazania…Z góry dziękuję.

  44. Kasia pisze:

    Panie Krystianie,
    może jest mi Pan w stanie wytłumaczyć dlaczego pochodna z -arctg|x| ma pochodną -x/(|x^3|+|x|), a nie po prostu -1/(1+x^2)?

    Byłabym bardzo wdzięczna za pomoc 🙂

    1. Joanna Grochowska pisze:

      Pani Kasiu, gdyby do policzenia byłaby pochodna po prostu z \displaystyle -arctgxto byłaby równa rzeczywiście \displaystyle -\frac{1}{{1+{{x}^{2}}}}

      Jednak tutaj do policzenia jest pochodna \displaystyle -arctg\left| x \right|, czyli argumentem nie jest sam “x” tylko coś więcej – moduł z “x”.

      Postępujemy jak zawsze w takich przypadkach, czyli: pochodna tego co “na zewnątrz” pomnożyć razy pochodna funkcji wewnętrznej (coś więcej niż sam “x”), czyli jakby \displaystyle \left( {-arctg\Delta } \right)'\cdot \Delta '

      Pytanie, ile wynosi pochodna modułu z x ?

      Rozpisując moduł, wiem, że:
      open vertical bar x close vertical bar equals open curly brackets table attributes columnalign \left end attributes row cell x comma space space space space space space space space x greater or equal than 0 end cell row cell negative x comma space space space space space x less than 0 end cell end table close

      Czyli odpowiednio pochodna byłby równa 1 lub -1.. Jednak potrzebuję pochodnej w ogólnym przypadku (nie na przedziałach).

      Dlatego uznaje się, że pochodna modułu to (warto zapamiętać ten wzór):

      \displaystyle \left( {\left| x \right|} \right)'=\frac{x}{{\left| x \right|}}

      Można sobie rozpisać na odpowiednich przedziałach i faktycznie wyjdzie 1 lub -1 😉

      Mając wszystko, liczę:

      \displaystyle \left( {-arctg\left| x \right|} \right)'=-\frac{1}{{1+{{{\left| x \right|}}^{2}}}}\cdot \left( {\left| x \right|} \right)'=-\frac{1}{{1+{{{\left| x \right|}}^{2}}}}\cdot \frac{x}{{\left| x \right|}}=-\frac{x}{{\left| x \right|+{{{\left| x \right|}}^{3}}}}

  45. Kamil pisze:

    Mam wielką prośbę. Nie moge poradzić sobie z monotonicznością tej funkcji x^3/(x^2+-x-2) będę ogromnie wdzięczny za odpowiedz. Pozdrawiam 🙂

    1. Kamil pisze:

      x^3/(x^2-x-2) wyzej jest mały bląd

    2. Anna Zalewska pisze:

      Dana jest funkcja f \left parenthesis x \right parenthesis equals fraction numerator x cubed over denominator x squared minus x minus 2 end fraction.

      Zaczynamy od wyznaczenia dziedziny funkcji.

      x squared minus x minus 2 not equal to 0
      capital delta equals \left parenthesis negative 1 \right parenthesis squared minus 4 times 1 times \left parenthesis negative 2 \right parenthesis equals 9
      x subscript 1 equals fraction numerator 1 minus square root of 9 over denominator 2 end fraction equals fraction numerator 1 minus 3 over denominator 2 end fraction equals fraction numerator negative 2 over denominator 2 end fraction equals negative 1
      space x subscript 2 equals fraction numerator 1 plus square root of 9 over denominator 2 end fraction equals fraction numerator 1 plus 3 over denominator 2 end fraction equals 4 over 2 equals 2

      Zatem D equals straight real numbers \backslash \left curly bracket negative 1 comma 2 \right curly bracket.

      Przechodzimy do wyznaczania monotoniczności funkcji f. W tym celu obliczymy jej pochodną i sprawdzimy, kiedy jest dodatnia, a kiedy ujemna.

      f apostrophe \left parenthesis x \right parenthesis equals fraction numerator open parentheses x cubed close parentheses apostrophe times open parentheses x squared minus x minus 2 close parentheses minus x cubed times open parentheses x squared minus x minus 2 close parentheses apostrophe over denominator open parentheses x squared minus x minus 2 close parentheses squared end fraction equals
      equals fraction numerator 3 x squared times open parentheses x squared minus x minus 2 close parentheses minus x cubed times open parentheses 2 x minus 1 close parentheses over denominator open parentheses x squared minus x minus 2 close parentheses squared end fraction equals fraction numerator 3 x to the power of 4 minus 3 x cubed minus 6 x squared minus 2 x to the power of 4 plus x cubed over denominator open parentheses x squared minus x minus 2 close parentheses squared end fraction equals
      equals fraction numerator x to the power of 4 minus 2 x cubed minus 6 x squared over denominator open parentheses x squared minus x minus 2 close parentheses squared end fraction

      Zbadamy teraz, kiedy pochodna przyjmuje wartości większe lub równe 0, a kiedy mniejsze lub równe 0.

      fraction numerator x to the power of 4 minus 2 x cubed minus 6 x squared over denominator open parentheses x squared minus x minus 2 close parentheses squared end fraction greater or equal than 0

      x to the power of 4 minus 2 x cubed minus 6 x squared greater or equal than 0

      x squared open parentheses x squared minus 2 x minus 6 close parentheses greater or equal than 0

      capital delta subscript 1 equals \left parenthesis negative 2 \right parenthesis squared minus 4 times 1 times \left parenthesis negative 6 \right parenthesis equals 28
      x subscript 1 equals fraction numerator 2 minus square root of 28 over denominator 2 end fraction equals fraction numerator 2 minus 2 square root of 7 over denominator 2 end fraction equals 1 minus square root of 7
      x subscript 2 equals fraction numerator 2 plus square root of 28 over denominator 2 end fraction equals fraction numerator 2 plus 2 square root of 7 over denominator 2 end fraction equals 1 plus square root of 7
      wykres

      Pochodna przyjmuje wartości większe lub równe 0 dla x element of \left parenthesis negative infinity comma 1 minus square root of 7 greater than oraz dla x element of less than 1 plus square root of 7 comma space plus infinity \right parenthesis
      Pochodna przyjmuje wartości mniejsze lub równe 0 dla x element of less than 1 minus square root of 7 comma 1 plus square root of 7 greater than

       

      Należy pamiętać o założeniach dziedziny: D equals straight real numbers \backslash \left curly bracket negative 1 comma 2 \right curly bracket.

       

      Zatem podana funkcja jest rosnąca w przedziałach x element of \left parenthesis negative infinity comma 1 minus square root of 7 greater thanx element of less than 1 plus square root of 7 comma space plus infinity \right parenthesis oraz malejąca w przedziałach x element of less than 1 minus square root of 7 comma negative 1 \right parenthesisx element of open parentheses negative 1 comma 2 close parenthesesx element of \left parenthesis 2 comma space 1 plus square root of 7 greater than.

  46. Klaudia pisze:

    Witam! Mam taką funkcję :
    f(x) = (2x-x^2)^(2/3). Jak obliczyć pochodną takiej funkcji?

    1. Joanna Grochowska pisze:

      By obliczyć pochodną z funkcji \displaystyle {{(2x-{{x}^{2}})}^{{\frac{2}{3}}}} stosuję wzór

      \displaystyle \left( {{{x}^{n}}} \right)'=n\cdot {{x}^{{n-1}}}, gdzie jak zauważam, mam coś więcej niż sam “x”, mam dodatkową funkcję (zwaną funkcją wewnętrzną). W taki przypadku obliczoną pochodną przemnażamy przez pochodną funkcji wewnętrznej, czyli mam jakby:

      \displaystyle \left( {{{\Delta }^{n}}} \right)'=n\cdot {{\Delta }^{{n-1}}}\cdot \Delta '

      Mam więc:
      \displaystyle \left( {{{{(2x-{{x}^{2}})}}^{{\frac{2}{3}}}}} \right)'=\frac{2}{3}{{(2x-{{x}^{2}})}^{{\frac{2}{3}-1}}}\cdot (2x-{{x}^{2}})'=\frac{2}{3}{{(2x-{{x}^{2}})}^{{-\frac{1}{3}}}}\cdot (2-2x)=\frac{{2\cdot (2-2x)}}{{3\sqrt[3]{{2x-{{x}^{2}}}}}}

  47. Karim pisze:

    Witam wszystkich. I proszę o pomoc.
    Mam problem z taką pochodną
    f(x)=[1-sin(2x)]/[2x^4+7x^2-3] Zatrzymuje się w pewnym momencie i nie wiem co dalej. Kalkulator do pochodnych stworzonego przez Pana Krystiana błędnie odczytuje ostatnia część 7x^2-3 zamiast zrobić wszystko w potędze obejmuje liczbę trzy od reszty za potęga. Proszę o pomoc

    1. Joanna Grochowska pisze:

      To nie chodzi Panu o pochodną funkcji \displaystyle \frac{{1-sin(2x)}}{{2{{x}^{4}}+7{{x}^{2}}-3}}?

      A może \displaystyle \frac{{1-sin(2x)}}{{2{{x}^{4}}+{{7}^{{{{x}^{2}}-3}}}}}, czy jeszcze inaczej? Proszę może gdzieś nawias () wstawić dodatkowo, to co ma być ujęte w potędze, bo nie do końca rozumiem o co chodzi z
      “część 7x^2-3 zamiast zrobić wszystko w potędze obejmuje liczbę trzy od reszty za potęga”.

      Pozdrawiam

  48. aga pisze:

    Witam, mam problem z pochodną: e^(3x+2)*((x^6)+4). Nie mam pojęcia jak to rozwiązać, bardzo proszę o pomoc…

    1. Joanna Grochowska pisze:

      Wykorzystuję tutaj wzór na iloczyn dwóch funkcji

      \displaystyle \left( {f\cdot g} \right)'=f'\cdot g+f\cdot g'

      Muszę również pamiętać o tym, że licząc pochodną funkcji złożonej, muszę domnożyć jeszcze razy pochodna funkcji wewnętrznej, tego “coś więcej niż sam x” . to znaczy

      \displaystyle \left( {{{e}^{\Delta }}} \right)'={{e}^{\Delta }}\cdot \Delta '

      No to rozwiązując przykład:
      \displaystyle \begin{matrix}\left( {{{e}^{{3x+2}}}\cdot ({{x}^{6}}+4)} \right)'=\left( {{{e}^{{3x+2}}}} \right)'\cdot ({{x}^{6}}+4)+{{e}^{{3x+2}}}\cdot ({{x}^{6}}+4)'= \\ {{e}^{{3x+2}}}\cdot (3x+2)'\cdot ({{x}^{6}}+4)+{{e}^{{3x+2}}}\cdot (6{{x}^{5}}+0)={{e}^{{3x+2}}}\cdot 3\cdot ({{x}^{6}}+4)+{{e}^{{3x+2}}}\cdot 6{{x}^{5}}= \\ 3{{e}^{{3x+2}}}\cdot \left( {{{x}^{6}}+4+2{{x}^{5}}} \right)=3{{e}^{{3x+2}}}\cdot \left( {{{x}^{6}}+2{{x}^{5}}+4} \right)\end{matrix}

  49. Andzia pisze:

    Pochodna z: cos^2\pierwiastek z x +sin^2\pierwiastek z x.

    1. Joanna Grochowska pisze:

      Czyli chodzi o pochodną funkcji \displaystyle {{cos }^{2}}\sqrt{x}+{{sin }^{2}}\sqrt{x}?

      No to liczę:
      \displaystyle \begin{matrix}\left( {{{{cos }}^{2}}\sqrt{x}+{{{sin }}^{2}}\sqrt{x}} \right)'=2cos \sqrt{x}\cdot \left( {cos \sqrt{x}} \right)'+2sin \sqrt{x}\cdot \left( {sin \sqrt{x}} \right)'= \\ 2cos \sqrt{x}\cdot (-sin \sqrt{x})\cdot \left( {\sqrt{x}} \right)'+2sin \sqrt{x}\cdot cos \sqrt{x}\cdot \left( {\sqrt{x}} \right)'= \\-2sin \sqrt{x}cos \sqrt{x}\cdot \frac{1}{{2\sqrt{x}}}+2sin \sqrt{x}\cdot cos \sqrt{x}\cdot \frac{1}{{2\sqrt{x}}}=0\end{matrix}

  50. Misia pisze:

    Dzień dobry panie Krystianie, czy mogłabym liczyć na pomoc w policzeniu pochodnej e^-x^2
    Z góry dziękuję i pozdrawiam

    1. Joanna Grochowska pisze:

      Pochodna funkcji \displaystyle y={{e}^{-}}^{{{{x}^{2}}}}

      Jest to funkcja złożona, licząc jej pochodną, liczę pochodną funkcji “zewnętrznej”, czyli e^(coś) i muszę domnożyć jeszcze ją razy pochodna funkcji wewnętrznej, tego „coś więcej niż sam x” . to znaczy

      \displaystyle \left( {{{e}^{\Delta }}} \right)'={{e}^{\Delta }}\cdot \Delta '

      Mam:

      \displaystyle \left( {{{e}^{-}}^{{{{x}^{2}}}}} \right)'={{e}^{-}}^{{{{x}^{2}}}}\cdot \left( {-{{x}^{2}}} \right)'={{e}^{-}}^{{{{x}^{2}}}}\cdot \left( {-2x} \right)=-2x{{e}^{-}}^{{{{x}^{2}}}}

  51. ela pisze:

    Witam a jak to rozwiązać ? :/ (x+1)(x+4)

    1. Joanna Grochowska pisze:

      f(x)=(x+1)(x+4)

      Pochodną tego można policzyć tak na prawdę na dwa sposoby:

      I SPOSÓB – z pochodnej iloczynu \displaystyle \left( {f\cdot g} \right)'=f'\cdot g+f\cdot g'

      \displaystyle \begin{matrix}\left( {\text{(x+1)(x+4)}} \right)\text{ }!!'!!\text{ =(x+1) }!!'!!\text{ }\cdot \text{(x+4)}+\text{(x+1)}\cdot \text{(x+4) }!!'!!\text{ =(1+0)}\cdot \text{(x+4)}+\text{(x+1)}\cdot \text{(1+0)=}\text{x+4+x+1=2x+5}\end{matrix}

      II SPOSÓB – przemnożyć przez siebie te dwa nawiasy (bez problemu mogę, gdyż w jednym jak i w drugim jest wielomian) i potem policzyć pochodną otrzymanego wielomianu korzystając z wzoru \displaystyle \left( {{{x}^{n}}} \right)'=n\cdot {{x}^{{n-1}}}

      \displaystyle \text{(x+1)(x+4)}={{x}^{2}}+4x+x+4={{x}^{2}}+5x+4

      \displaystyle \left( {{{x}^{2}}+5x+4} \right)'=\left( {{{x}^{2}}} \right)'+\left( {5x} \right)'+\left( 4 \right)'=2x+5\cdot 1+0=2x+5

  52. Lidka pisze:

    Witam Panie Krystianie. Czy w wyznaczaniu pochodnych takie cos jak: e^pi , traktujemy jako liczbę czyli wynik to zero czy w inny sposób?

    Dziękuje za odpowiedz
    Pozdrawiam

    1. Joanna Grochowska pisze:

      Tak dokładnie, traktujemy to wyrażenie jako liczbę (nie ma Pani tutaj żadnej zmiennej „x”, tylko same stałe), więc pochodna tego to zero 🙂

  53. Czy ktoś by mógł mi pomóc w rozwiązaniu tych pochodnych?

    y=e^(1/cosx)
    y=a/2(e^(x/a)+e^(-(x/a)))
    y=arcsin(e^4x )
    y=e^√(7x^2 )
    y=log_7cos√(1+x)

    1. Joanna Grochowska pisze:

      Przykład pierwszy: \displaystyle y={{e}^{{\frac{1}{{cos x}}}}}

      Jest to funkcja złożona, liczę pochodną funkcji „zewnętrznej”, czyli e^(coś) i muszę domnożyć jeszcze ją razy pochodna funkcji wewnętrznej, tego „coś więcej niż sam x” . To znaczy

      \displaystyle \left( {{{e}^{\Delta }}} \right)'={{e}^{\Delta }}\cdot \Delta '

      Mam:
      \displaystyle \left( {{{e}^{{\frac{1}{{cos x}}}}}} \right)'={{e}^{{\frac{1}{{cos x}}}}}\cdot \left( {\frac{1}{{cos x}}} \right)'

      Pochodną \displaystyle \left( {\frac{1}{{cos x}}} \right)'można policzyć np z wzoru na iloraz dwóch funkcji
      \displaystyle \left( {\frac{f}{g}} \right)'=\frac{{f'\cdot g-f\cdot g'}}{{{{g}^{2}}}}


      {e^{\frac{1}{{\cos x}}}}\frac{{1' \cdot \cos x - 1 \cdot {{\left( {\cos x} \right)}^\prime }}}{{{{\cos }^2}x}} = {e^{\frac{1}{{\cos x}}}}\frac{{ - \left( { - \sin x} \right)}}{{{{\cos }^2}x}} = \frac{{{e^{\frac{1}{{\cos x}}}}\sin x}}{{{{\cos }^2}x}}

    2. Joanna Grochowska pisze:

      Przykład drugi: \displaystyle y=\frac{a}{2}({{e}^{{^{{\frac{x}{a}}}}}}+{{e}^{{-\frac{x}{a}}}})

      Jak rozumiem, liczbę “a” traktuję jako pewną stałą?

      No to liczę pochodną, stosując wzór: \displaystyle \left( {{{e}^{\Delta }}} \right)'={{e}^{\Delta }}\cdot \Delta '

      \displaystyle y'=\left( {\frac{a}{2}({{e}^{{^{{\frac{x}{a}}}}}}+{{e}^{{-\frac{x}{a}}}})} \right)'=\frac{a}{2}\left( {{{e}^{{^{{\frac{x}{a}}}}}}+{{e}^{{-\frac{x}{a}}}}} \right)'=\frac{a}{2}\left[ {\left( {{{e}^{{^{{\frac{x}{a}}}}}}} \right)'+\left( {{{e}^{{-\frac{x}{a}}}}} \right)'} \right]=
      \displaystyle \frac{a}{2}\left[ {{{e}^{{^{{\frac{x}{a}}}}}}\left( {\frac{x}{a}} \right)'+{{e}^{{^{{-\frac{x}{a}}}}}}\left( {-\frac{x}{a}} \right)'} \right]=\frac{a}{2}\left[ {{{e}^{{^{{\frac{x}{a}}}}}}\cdot \frac{1}{a}\cdot 1+{{e}^{{^{{-\frac{x}{a}}}}}}\cdot \left( {-\frac{1}{a}} \right)\cdot 1} \right]=
      \displaystyle \frac{a}{2}\cdot \frac{1}{a}\left( {{{e}^{{^{{\frac{x}{a}}}}}}-{{e}^{{^{{-\frac{x}{a}}}}}}} \right)=\frac{1}{2}\left( {{{e}^{{^{{\frac{x}{a}}}}}}-{{e}^{{^{{-\frac{x}{a}}}}}}} \right)

      Można ewentualnie trochę przekształcić wynik i otrzymać:
      \displaystyle \frac{1}{2}\left( {{{e}^{{^{{\frac{x}{a}}}}}}-{{e}^{{^{{-\frac{x}{a}}}}}}} \right)=\frac{1}{2}\left( {{{e}^{{^{{\frac{{2x}}{a}-\frac{x}{a}}}}}}-{{e}^{{^{{-\frac{x}{a}}}}}}} \right)=\frac{1}{2}{{e}^{{^{{-\frac{x}{a}}}}}}\left( {{{e}^{{^{{\frac{{2x}}{a}}}}}}-1} \right)

    3. Joanna Grochowska pisze:

      Przykład trzeci: chodzi o \displaystyle y=arcsin({{e}^{4}}\cdot x) czy może \displaystyle y=arcsin({{e}^{{4x}}})

      Pierwszy przypadek:

      \displaystyle \left( {arcsin({{e}^{4}}\cdot x)} \right)'=\frac{1}{{\sqrt{{1-{{{({{e}^{4}}\cdot x)}}^{2}}}}}}\cdot \left( {{{e}^{4}}\cdot x} \right)'=\frac{1}{{\sqrt{{1-{{{({{e}^{4}}\cdot x)}}^{2}}}}}}\cdot {{e}^{4}}\left( x \right)'=\frac{{{{e}^{4}}}}{{\sqrt{{1-{{e}^{8}}{{x}^{2}}}}}}

      Drugi przypadek:

      \displaystyle \left( {arcsin({{e}^{{4x}}})} \right)'=\frac{1}{{\sqrt{{1-{{{({{e}^{{4x}}})}}^{2}}}}}}\cdot \left( {{{e}^{{4x}}}} \right)'=\frac{1}{{\sqrt{{1-{{e}^{{8x}}}}}}}\cdot {{e}^{{4x}}}\left( {4x} \right)'=\frac{{4{{e}^{{4x}}}}}{{\sqrt{{1-{{e}^{{8x}}}}}}}

    4. Joanna Grochowska pisze:

      Przykład czwarty: \displaystyle y={{e}^{{\sqrt{{7{{x}^{2}}}}}}}

      Mamy tutaj złożenie kilku funkcji, dlatego korzystam z następujących wzorów:

      \displaystyle \left( {{{e}^{\Delta }}} \right)'={{e}^{\Delta }}\cdot \Delta '

      \displaystyle \left( {\sqrt{\Delta }} \right)'=\frac{1}{{2\sqrt{\Delta }}}\cdot \Delta '

      gdzie znaczek \displaystyle \Delta oznacza po prostu “coś więcej niż sam x”.

      \displaystyle y'=\left( {{{e}^{{\sqrt{{7{{x}^{2}}}}}}}} \right)'={{e}^{{\sqrt{{7{{x}^{2}}}}}}}\cdot \left( {\sqrt{{7{{x}^{2}}}}} \right)'={{e}^{{\sqrt{{7{{x}^{2}}}}}}}\cdot \frac{1}{{2\sqrt{{7{{x}^{2}}}}}}\cdot \left( {7{{x}^{2}}} \right)'=\frac{{{{e}^{{\sqrt{{7{{x}^{2}}}}}}}}}{{2\sqrt{{7{{x}^{2}}}}}}\cdot 7\cdot 2x=\frac{{7x{{e}^{{\sqrt{{7{{x}^{2}}}}}}}}}{{\sqrt{{7{{x}^{2}}}}}}

    5. Joanna Grochowska pisze:

      Przykład piąty: \displaystyle lo{{g}_{7}}cos\sqrt{{1+x}}

      Tym razem mamy pochodną logarytmu, gdzie pod wyrażeniem logarytmowanym jest coś więcej niż sam x (oznaczam to przez \displaystyle \Delta ). Funkcja jest złożona i to kilkukrotnie. Dlatego stosuję na początku wzór :

      \displaystyle \left( {{{{log }}_{a}}\Delta } \right)'=\frac{1}{{\Delta ln a}}\cdot \Delta'

      Obliczając kolejne pochodne, Mam więc:

      \displaystyle \left( {{{{log }}_{7}}cos \sqrt{{1+x}}} \right)'=\frac{1}{{cos \sqrt{{1+x}}\cdot ln 7}}\cdot \left( {cos \sqrt{{1+x}}} \right)'=

      \displaystyle \frac{1}{{cos \sqrt{{1+x}}\cdot ln 7}}\cdot \left( {-sin \sqrt{{1+x}}} \right)\cdot \left( {\sqrt{{1+x}}} \right)'=

      \displaystyle -\frac{{sin \sqrt{{1+x}}}}{{cos \sqrt{{1+x}}\cdot ln 7}}\cdot \frac{1}{{2\sqrt{{1+x}}}}\cdot \left( {1+x} \right)'=

      \displaystyle -tg\sqrt{{1+x}}\cdot \frac{1}{{2\cdot ln 7\cdot \sqrt{{1+x}}}}\cdot \left( {0+1} \right)=-\frac{{tg\sqrt{{1+x}}}}{{2ln 7\cdot \sqrt{{1+x}}}}

  54. paulina pisze:

    dlaczego pochodna z -x/(x-1)^2 wychodzi y'(x) = (x+1)/(x-1)^3

    1. Joanna Grochowska pisze:

      Stosuję tutaj wzór na pochodną ilorazu dwóch funkcji, czyli
      \displaystyle \left( {\frac{f}{g}} \right)'=\frac{{f'\cdot g-f\cdot g'}}{{{{g}^{2}}}}

      No to rozpisując przykład:
      \displaystyle \left( {\frac{{-x}}{{{{{(x-1)}}^{2}}}}} \right)'=\frac{{\left( {-x} \right)'\cdot {{{(x-1)}}^{2}}-\left( {-x} \right)\cdot \left[ {{{{(x-1)}}^{2}}} \right]'}}{{{{{\left[ {{{{(x-1)}}^{2}}} \right]}}^{2}}}}=\frac{{\left( {-1} \right)\cdot {{{(x-1)}}^{2}}+x\cdot 2\cdot (x-1)\cdot (x-1)'}}{{{{{(x-1)}}^{4}}}}=\frac{{-{{{(x-1)}}^{2}}+2x\cdot (x-1)\cdot 1}}{{{{{(x-1)}}^{4}}}}=\frac{{(x-1)\cdot \left[ {-(x-1)+2x} \right]}}{{{{{(x-1)}}^{4}}}}=\frac{{-x+1+2x}}{{{{{(x-1)}}^{3}}}}=\frac{{x+1}}{{{{{(x-1)}}^{3}}}}

  55. Tomek pisze:

    Cześć
    Mam prośbę w sprawie rozwiązania równania różniczkowego metodą analityczną (krok po kroku):
    y`-0,5y=xe^(2x)
    z góry dziękuję

  56. dominika pisze:

    Chciałabym dowiedzieć się jak wyszedł ten wynik:y'(x) = 3 x^2 cos(1-x^2)+2 x^4 sin(1-x^2) z funkcji x^3cos(x^2-1)

    1. Joanna Grochowska pisze:

      Tutaj by obliczyć pochodną podanej funkcji, wykorzystuję wzór na pochodną iloczynu dwóch funkcji:
      \displaystyle \left( {f\cdot g} \right)'=f'\cdot g+f\cdot g'

      Jedną z niech jest \displaystyle f={{x}^{3}}, drugą zaś \displaystyle g=cos ({{x}^{2}}-1), która jest funkcją złożoną.

      No to liczymy pochodną:
      \displaystyle \left( {{{x}^{3}}cos ({{x}^{2}}-1)} \right)'=\left( {{{x}^{3}}} \right)'\cdot \left( {cos ({{x}^{2}}-1)} \right)+\left( {{{x}^{3}}} \right)\cdot \left( {cos ({{x}^{2}}-1)} \right)'=3{{x}^{2}}\cdot cos ({{x}^{2}}-1)+{{x}^{3}}\cdot \left( {-sin ({{x}^{2}}-1)} \right)\cdot ({{x}^{2}}-1)'=3{{x}^{2}}\cdot cos ({{x}^{2}}-1)-{{x}^{3}}\cdot sin ({{x}^{2}}-1)\cdot 2x=3{{x}^{2}}\cdot cos ({{x}^{2}}-1)-2{{x}^{4}}\cdot sin ({{x}^{2}}-1)

      Wynik jest jednak odrobinę inny od tego wskazanego w WolframAlpha
      http://www.wolframalpha.com/input/?i=%28x%5E3*cos%28x%5E2-1%29%29%27

      Widać, że wyrażenie w nawiasie – wielomian jest przedstawiony “odwrotnie”, jakby z minusem, co oczywiście można zrobić, czyli \displaystyle cos ({{x}^{2}}-1)=cos (-(1-{{x}^{2}}))lub też \displaystyle sin ({{x}^{2}}-1)=sin (-(1-{{x}^{2}}))
      I w tym miejscu korzystając z własności funkcji trygonometrycznych kąta ujemnego:
      \displaystyle \begin{matrix} cos (-\alpha )=cos (\alpha )sin (-\alpha )=-sin (\alpha )\end{matrix}

      Otrzymuję wynik zgodny z tym wskazanym z kalkulatorze:
      \displaystyle 3{{x}^{2}}\cdot cos ({{x}^{2}}-1)-2{{x}^{4}}\cdot sin ({{x}^{2}}-1)=3{{x}^{2}}\cdot cos (-(-{{x}^{2}}+1))-2{{x}^{4}}\cdot sin (-(-{{x}^{2}}+1))=3{{x}^{2}}\cdot cos (1-{{x}^{2}})-2{{x}^{4}}\cdot (-sin (1-{{x}^{2}}))=3{{x}^{2}}\cdot cos (1-{{x}^{2}})+2{{x}^{4}}\cdot sin (1-{{x}^{2}})

  57. Karol pisze:

    Witam. Dostałem na egzaminie dwa przykłady, skorzystałem z kalkulatora on je oczywiście obliczył ale ja nadal nie wiem skąd wziął się wynik, oto one :
    1) (niestety nie wiem do czego dąży x bo się zamazało ale chyba do nieskończoności) lim(lm(1+4x^2))/x
    2) (też x chyba dąży do nieskończoności) lim(1-e^2x)/tg(x)
    Pozdrawiam Karol

  58. Marlena pisze:

    Dzień dobry.
    Pewnie pisze pod złym postem, forum, czy nie wiem jak to nazwać. Jednakże mam zadanie które nie bardzo wiem, jak rozwiązać. Liczę na Pańską pomoc 🙂

    Zad.: Dowieść,że dla xcR prawdziwa jest nierówność:
    a) 2xarctgx > ln(1+x^2)
    b) |arctgx – arctgy| <= |x-y|

    Dodam jeszcze, iż wiem, że jest to związane z Twierdzeniem Lagrange'a ale nawet z tą wiedzą nic mądrego mi nie wychodzi 🙁

  59. Anna pisze:

    Dzień dobry!

    Muszę policzyć pierwszą i drugą pochodną z y=lnx/√x wygląda niewinnie ale jest niezwykle uciążliwa. Bardzo proszę o pomoc Panie Krystianie

    1. Kamil Kocot pisze:

      y equals fraction numerator ln x over denominator square root of x end fraction

      Należy skorzystać ze wzoru na dzielenie

      open parentheses f over g close parentheses to the power of apostrophe equals fraction numerator f apostrophe g minus f g apostrophe over denominator g squared end fraction

      Dostaniemy

      table attributes columnalign \right center \left columnspacing 0px end attributes row cell y apostrophe end cell equals cell fraction numerator open parentheses ln x close parentheses apostrophe times square root of x minus ln x times open parentheses square root of x close parentheses apostrophe over denominator open parentheses square root of x close parentheses squared end fraction equals fraction numerator \begin display style 1 over x end style times square root of x minus ln x times \begin display style fraction numerator 1 over denominator 2 square root of x end fraction end style over denominator x end fraction end cell row blank equals cell fraction numerator \begin display style fraction numerator square root of x over denominator x end fraction minus fraction numerator ln x over denominator 2 square root of x end fraction end style over denominator x end fraction times fraction numerator 2 square root of x over denominator 2 square root of x end fraction equals fraction numerator \begin display style fraction numerator 2 x over denominator x end fraction minus ln x end style over denominator 2 x square root of x end fraction end cell row blank equals cell fraction numerator \begin display style 2 minus ln x end style over denominator 2 x square root of x end fraction end cell end table

      I druga pochodna

      table attributes columnalign \right center \left columnspacing 0px end attributes row cell y apostrophe apostrophe end cell equals cell open parentheses fraction numerator \begin display style 2 minus ln x end style over denominator 2 x square root of x end fraction close parentheses to the power of apostrophe equals fraction numerator \begin display style open parentheses 2 minus ln x close parentheses apostrophe times 2 x square root of x minus open parentheses 2 minus ln x close parentheses times open parentheses 2 x square root of x close parentheses apostrophe end style over denominator open parentheses 2 x square root of x close parentheses squared end fraction end cell row blank equals cell fraction numerator \begin display style open parentheses negative 1 over x close parentheses times 2 x square root of x minus open parentheses 2 minus ln x close parentheses times open parentheses 2 x to the power of bevelled 3 over 2 end exponent close parentheses apostrophe end style over denominator open parentheses 2 x to the power of \begin display style bevelled 3 over 2 end style end exponent close parentheses squared end fraction end cell row blank equals cell fraction numerator \begin display style open parentheses negative 1 over x close parentheses times 2 x square root of x minus open parentheses 2 minus ln x close parentheses times 2 times 3 over 2 x to the power of bevelled 1 half end exponent end style over denominator 4 x cubed end fraction end cell row blank equals cell fraction numerator \begin display style negative 2 square root of x minus open parentheses 2 minus ln x close parentheses times 3 square root of x end style over denominator 4 x cubed end fraction end cell row blank equals cell fraction numerator \begin display style negative 2 square root of x minus 6 square root of x plus 3 square root of x ln x end style over denominator 4 x cubed end fraction end cell row blank equals cell fraction numerator \begin display style negative 8 square root of x plus 3 square root of x ln x end style over denominator 4 x cubed end fraction end cell row blank equals cell fraction numerator \begin display style square root of x open parentheses 3 minus 8 ln x close parentheses end style over denominator 4 x cubed end fraction end cell row blank equals cell fraction numerator \begin display style 3 minus 8 ln x end style over denominator 4 x squared square root of x end fraction end cell end table

  60. Tomasz W. pisze:

    Witam. Mam problem z obliczeniem pochodnej dla f(x) = arcsin√1-x/1+x. Całe wyrażenie dzielenia jest pod pierwiastkiem.

  61. damian pisze:

    y=e^2x + x^2 + cos(4x^3-6)

    przy e jest do potęgi 2x.

    potrzebuje pomocy

  62. Aleksandra K. pisze:

    A dlaczego pochodna z ctgx+x=-ctg^2x ????????????

  63. pilarczyk123 pisze:

    chcialbym zapytac jako co traktujemy a/t przy funkcji cos t/a

  64. Paulina pisze:

    Mam pytanie
    dlaczego √x(1-2x^2) ma pochodną 1-10x^2/2√x ? Prosze o wytłumaczenie. Z gódy dziękuje 🙂

  65. Kasia pisze:

    Pomoże ktoś mam do obliczenia 2 pochodne : (sinx / sinx-cosx) i pierwiastek z 5 tgx -2ctgx. Z góry dziękuje za odpowiedź 🙂

  66. Karolina pisze:

    Dzień dobry, jak policzyć pochodną (x-1)^3(x-2) krok po kroku i dlaczego wyznacza się 3 przed nawias? Nie rozumiem tego. Byłabym wdzięczna za wytłumaczenie. Pozdrawiam

  67. KASIA pisze:

    pochodna sin(x^x) – krok po kroku, proszę !

  68. Dominik pisze:

    Mam pytanie, ile wynosi pochodna z \sqrt(2x-sinx(cos(x))^3)

  69. Michał pisze:

    Mama pytanie, jak bedzie wygladala pochodna z arcsin(2x-1)? Czy po tym jak “trafi” pod pierwiastek to (2x-1)^2 nalezy rozwinac jak rownanie kwadratowe?

    1. Krystian Karczyński pisze:

      Pójdzie tak:

      {{\left( arcsin \left( 2x-1 \right) \right)}^{\prime }}=\frac{1}{\sqrt{1-{{\left( 2x-1 \right)}^{2}}}}{{\left( 2x-1 \right)}^{\prime }}=\frac{1}{\sqrt{1-\left( 4{{x}^{2}}-4x+1 \right)}}\cdot 2=

      =\frac{2}{\sqrt{1-4{{x}^{2}}+4x-1}}=\frac{2}{\sqrt{-4{{x}^{2}}+4x}}=\frac{2}{\sqrt{4\left( -{{x}^{2}}+x \right)}}=\frac{2}{\sqrt{4}\sqrt{x-{{x}^{2}}}}=

      =\frac{2}{2\sqrt{x-{{x}^{2}}}}=\frac{1}{\sqrt{x-{{x}^{2}}}}

      Polecam: Kurs Pochodnych

  70. Kasia Peczyńska pisze:

    Hej:)
    Mam problem z policzeniem pochodnych II rzędu.
    Przykład wygląda tak:
    f(x,y)= 7- 4x/y – 2x^4y^3

    Byłabym wdzięczna za pomoc:)
    Pozdrawiam.

    1. Krystian Karczyński pisze:

      Hej. To pójdzie tak:

      f\left( x,y \right)=7-\frac{4x}{y}-2{{x}^{4}}{{y}^{3}}

      Pochodne cząstkowe I-go rzędu:

      \frac{\partial f}{\partial x}=\frac{\partial }{\partial x}\left( 7-\frac{4x}{y}-2{{x}^{4}}{{y}^{3}} \right)=\frac{\partial }{\partial x}\left( 7 \right)-\frac{\partial }{\partial x}\left( \frac{4x}{y} \right)-\frac{\partial }{\partial x}\left( 2{{x}^{4}}{{y}^{3}} \right)=0-\frac{4}{y}\frac{\partial }{\partial x}\left( x \right)-2{{y}^{3}}\frac{\partial }{\partial x}\left( {{x}^{4}} \right)=

      =0-\frac{4}{y}-2{{y}^{3}}\cdot 4{{x}^{3}}=-\frac{4}{y}-8{{y}^{3}}{{x}^{3}}

      \frac{\partial f}{\partial y}=\frac{\partial }{\partial y}\left( 7-\frac{4x}{y}-2{{x}^{4}}{{y}^{3}} \right)=\frac{\partial }{\partial y}\left( 7 \right)-\frac{\partial }{\partial y}\left( \frac{4x}{y} \right)-\frac{\partial }{\partial y}\left( 2{{x}^{4}}{{y}^{3}} \right)=0-4x\frac{\partial }{\partial x}\left( \frac{1}{y} \right)-2{{x}^{4}}\frac{\partial }{\partial y}\left( {{y}^{3}} \right)=

      =-4x\left( -\frac{1}{{{y}^{2}}} \right)-2{{x}^{4}}\cdot 3{{y}^{2}}=\frac{4x}{{{y}^{2}}}-6{{x}^{4}}{{y}^{2}}

      Pochodne cząstkowe II-go rzędu:

      \frac{{{\partial }^{2}}f}{\partial {{x}^{2}}}=\frac{\partial }{\partial x}\left( -\frac{4}{y}-8{{y}^{3}}{{x}^{3}} \right)=\frac{\partial }{\partial x}\left( -\frac{4}{y} \right)-\frac{\partial }{\partial x}\left( 8{{y}^{3}}{{x}^{3}} \right)=0-8{{y}^{3}}\frac{\partial }{\partial x}\left( {{x}^{3}} \right)=-8{{y}^{3}}\cdot 3{{x}^{2}}=-24{{x}^{2}}{{y}^{3}}

      \frac{{{\partial }^{2}}f}{\partial y\partial x}=\frac{\partial }{\partial y}\left( -\frac{4}{y}-8{{y}^{3}}{{x}^{3}} \right)=\frac{\partial }{\partial y}\left( -\frac{4}{y} \right)-\frac{\partial }{\partial y}\left( 8{{y}^{3}}{{x}^{3}} \right)=-4\frac{\partial }{\partial y}\left( \frac{1}{y} \right)-8{{x}^{3}}\frac{\partial }{\partial y}\left( {{y}^{3}} \right)=\frac{4}{{{y}^{2}}}-24{{x}^{3}}{{y}^{2}}

      \frac{{{\partial }^{2}}f}{\partial x\partial y}=\frac{\partial }{\partial x}\left( \frac{4x}{{{y}^{2}}}-6{{x}^{4}}{{y}^{2}} \right)=\frac{\partial }{\partial x}\left( \frac{4x}{{{y}^{2}}} \right)-\frac{\partial }{\partial x}\left( 6{{x}^{4}}{{y}^{2}} \right)=\frac{4}{{{y}^{2}}}\frac{\partial }{\partial x}\left( x \right)-6{{y}^{2}}\frac{\partial }{\partial x}\left( {{x}^{4}} \right)=\frac{4}{{{y}^{2}}}-24{{x}^{3}}{{y}^{2}}

      \frac{{{\partial }^{2}}f}{\partial {{y}^{2}}}=\frac{\partial }{\partial y}\left( \frac{4x}{{{y}^{2}}}-6{{x}^{4}}{{y}^{2}} \right)=\frac{\partial }{\partial y}\left( \frac{4x}{{{y}^{2}}} \right)-\frac{\partial }{\partial y}\left( 6{{x}^{4}}{{y}^{2}} \right)=4x\frac{\partial }{\partial y}\left( {{y}^{-2}} \right)-6{{x}^{4}}\frac{\partial }{\partial y}\left( {{y}^{2}} \right)=-\frac{8x}{{{y}^{3}}}-12{{x}^{4}}y

      Polecam także mój Kurs Video: Kurs Funkcje Wielu Zmiennych

  71. Katarzyna pisze:

    Mam takie zadanie i nie umię go rozwiązać prosze o pomoc Z góry dziękuję 🙂
    Znaleźć:
    ∂z/∂y dla danej funkcji:
    z=x^2 √((x+y)/(x-y))

  72. Ania pisze:

    mam pare zadan i nie wiem jak je rozwiazac

  73. Jolanta Lokajczyk pisze:

    Proszę o pomoc w obliczeniu pochodnej z funkcji f(x)=〖log〗_2^5 (x+x^3)/arctgx (tzn f(x)=log stopnia 2 w potędze 5 z ((x+x^3)/arctgx) ). Radzę sobie z takim zadaniem, gdy log nie jest w potędze. W tym przypadku nie mam pewności jak to ma być prawidłowo obliczone.

  74. Klaudia pisze:

    Panie Krystianie zwracam się z ogromną prośbą…:) Otóż chodzi mi o zbadanie funkcji(tzn.zb.wartości,gdzie funkcja rośnie,gdzie maleje) ,ekstrema,punkty stałe, maksima i minima:
    a)f(x)=Ax/(1+x),A>=2
    b)f(x)=2/3x+1/3A,A>=11

    1. Krystian Karczyński pisze:

      a) ‘A’ traktować trzeba jak stałą. Stosuję zasady i umowy podane w moim Kursie: Kurs Pochodne na Akademii

      fleft( x right)=frac{Ax}{1+x},quad Age 2

      Najpierw dziedzina funkcji:

      {{1}^{0}}quad Df:xin Rbackslash { -1 }

      {{2}^{0}}quad {f}'left( x right)=frac{{{left( Ax right)}^{prime }}left( 1+x right)-Ax{{left( 1+x right)}^{prime }}}{{{left( 1+x right)}^{2}}}=frac{Aleft( 1+x right)-Ax}{{{left( 1+x right)}^{2}}}=frac{A+Ax-Ax}{{{left( 1+x right)}^{2}}}=frac{A}{{{left( 1+x right)}^{2}}}

      {{3}^{0}}quad frac{A}{{{left( 1+x right)}^{2}}}=0quad /cdot {{left( 1+x right)}^{2}}– mogę wykonać to mnożenie, ponieważ {{left( 1+x right)}^{2}}jest zawsze nieujemne

      A=0

      Ale stała A nie może być równa 0, ze względu na założenie na początku zadania Age 2. Czyli równanie nie ma rozwiązań, czyli pochodna nie ma miejsc zerowych.

      {{4}^{0}}Rysuję jej przybliżony wykres:

      Wykres pochodnej

      i piszę odpowiedź:

      {{5}^{0}}Odp. Funkcja jest rosnąca w całej swojej dziedzinie, tzn. xin Rbackslash { -1 }.

      Nie osiąga żadnych ekstremów.

  75. kamil pisze:

    Witam, mam pytanie ile wynoszą pochodne cząstkowe pierwszego rzędu z x^lny.

  76. zustek pisze:

    Co się stało z możliwością, zobaczenia krok po kroku jak jest wyliczana pochodna

  77. jonsi pisze:

    Panie Krystianie, a ile wynosi pochodna z f(x)=ln(x+/(ax-1))?

  78. Karcia20 pisze:

    Wiatm
    Mój problem polega na tym że kompletnie zapomniałam jak liczyło się pochodne, przykład podam napewno banalnie prosty, ale może uda mi się jakoś odświeżyć pamieć.
    cos^2(x) – sinus^2(x) .
    Z góry dziękuję za pomoc

  79. Paweł pisze:

    Witam
    Mam problem z obliczeniem całki x^3*e^(-2x^4). Jak sie do tego zabrac? Jak na razie ani przez podstawienie ani przez częsci nic nie wychodzi chocbym nie wiem jak kombinował. Bardzo proszę o pomoc. Chciałbym jeszcze zapytac jak narysowac wykres takiego “cuda”?

  80. adam pisze:

    czy przypadkiem współczynnik przy drugiej pochodnej nie powinien być (1/a)(1/a-1) ?

    1. Krystian Karczyński pisze:

      Jasne, że powinien, gamoń ze mnie. Poprawiłem, wielkie dzięki za korektę…

  81. ola pisze:

    nie ma pojęcia, jaki może być wzór na n-tą pochodną pierwiastka (dowolnego stopnia). Czy mogę liczyć na pomoc?