fbpx
blog

Kalkulator do pochodnych (NIEAKTUALNY)

Krystian Karczyński

Założyciel i szef serwisu eTrapez.

Magister matematyki Politechniki Poznańskiej. Korepetytor matematyki z wieloletnim stażem. Twórca pierwszych Kursów eTrapez, które zdobyły ogromną popularność wśród studentów w całej Polsce.

Mieszka w Szczecinie. Lubi spacery po lesie, plażowanie i kajaki.


Ogłoszenie

Niestety, po ponad 12 latach od udostępnienia przeze mnie darmowego kalkulatora do pochodnych, musiałem go “wyłączyć”.

Kalkulator był prostym “widgetem” strony WolframAlpha. Jakiś czas temu Wolframalpha zmienił swoją politykę odnośnie widgetów. Między innymi: przestały one obliczać “na miejscu”, tylko przerzucają użytkownika na stronę WolframAlpha .

Przepraszam za kłopot wszystkich dotychczasowych użytkowników Kalkulatora Do Pochodnych. Przez długie lata bił on rekordy popularności jeśli chodzi o liczbę odwiedzających i zapytań.

Jednocześnie serdecznie zapraszam do naszej nowej aplikacji:

Aplikacja do nauki liczenia pochodnych – MathKiwi

Jest ona dostępna tylko za 11 zł / miesiąc, a zrezygnować można w dowolnej chwili.

Pozdrawiam i powodzenia

Krystian Karczyński

Szukasz korepetycji z matematyki na poziomie studiów lub szkoły średniej? A może potrzebujesz kursu, który przygotuje Cię do matury?

Jesteśmy ekipą eTrapez. Uczymy matematyki w sposób jasny, prosty i bardzo dokładny - trafimy nawet do najbardziej opornego na wiedzę.

Stworzyliśmy tłumaczone zrozumiałym językiem Kursy video do pobrania na komputer, tablet czy telefon. Włączasz nagranie, oglądasz i słuchasz, jak na korepetycjach. O dowolnej porze dnia i nocy.

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *

Twój komentarz będzie dostępny publicznie na naszej stronie razem z powyższym podpisem. Komentarz możesz zmienić, lub usunąć w każdej chwili. Administratorem danych osobowych podanych w tym formularzu jest eTrapez Usługi Edukacyjne E-Learning Krystian Karczyński. Zasady przetwarzania danych oraz Twoje uprawnienia z tym związane opisane są w Polityce Prywatności.


  1. Karolina pisze:

    Mam problem z pochodą funkcji f(x)= arcsin(sqrt(x-1)) we wzorze na pochodną jest x^2 a w kalkulatorze wynik wychodzi bez kwadratu 🙁 nie wiem co robię źle.

  2. :) pisze:

    Dzień dobry mam problem z policzeniem tych pochodnych :Niech y = f(x) = cos 2x, g(x) = e^((1/3)*x)a) oblicz g'(3)b) oblicz (f(x)g(x))’c) oblicz  (f(x)/g(x))’

    1. Krystian Karczyński pisze:

      a)

      g’\left( x \right) = {\left( {{e^{{\textstyle{1 \over 3}}x}}} \right)^\prime } = {e^{{\textstyle{1 \over 3}}x}} \cdot {\left( {\frac{1}{3}x} \right)^\prime } = \frac{1}{3}{e^{{\textstyle{1 \over 3}}x}}

      g’\left( 3 \right) = \frac{1}{3}{e^{{{\frac{1}{3}}} \cdot 3}} = \frac{1}{3}e = \frac{e}{3}

      b)

      f\left( x \right)g\left( x \right) = \cos 2x \cdot {e^{{\textstyle{1 \over 3}}x}} = {e^{{\textstyle{1 \over 3}}x}}\cos 2x

      {\left[ {f\left( x \right)g\left( x \right)} \right]^\prime } = {\left( {{e^{{\textstyle{1 \over 3}}x}}\cos 2x} \right)^\prime } = {\left( {{e^{{\textstyle{1 \over 3}}x}}} \right)^\prime }\cos 2x + {e^{{\textstyle{1 \over 3}}x}}{\left( {\cos 2x} \right)^\prime } =

      = {e^{{\textstyle{1 \over 3}}x}}{\left( {\frac{1}{3}x} \right)^\prime }\cos 2x + {e^{{\textstyle{1 \over 3}}x}}\left( { – \sin 2x} \right) \cdot {\left( {2x} \right)^\prime } = \frac{1}{3}{e^{{\textstyle{1 \over 3}}x}}\cos 2x – 2{e^{{\textstyle{1 \over 3}}x}}\sin 2x =

      = {e^{{\textstyle{1 \over 3}}x}}\left( {\frac{1}{3}\cos 2x – 2\sin 2x} \right)

  3. politechnika lodzka pisze:

    spoko opcja czasami korzystamy Pozdro

  4. Klaudia pisze:

    Dzień dobry, jak wprowadzic pierwiastek w kalkulator aby obejmował całe wyrażenie a nie tylko daną część?

  5. Antytalencię pisze:

    Dzień dobry.Nwm jak policzyć  pochodną f(x) =sin(2 do x).Wię piszę tutaj

  6. Witam, polecam moją darmową Lekcję do liczenia pochodnej z definicji 🙂

    A co przykładu, poleci tak:

    Wzór na pochodną w punkcie x subscript 0 z definicji to:

    f apostrophe open parentheses x subscript 0 close parentheses equals limit as increment x rightwards arrow 0 of fraction numerator f open parentheses x subscript 0 plus increment x close parentheses minus f open parentheses x subscript 0 close parentheses over denominator increment x end fraction

    W naszym przypadku f open parentheses x close parentheses equals fraction numerator 1 over denominator 5 x plus 6 end fraction .

    Mamy więc:

    f apostrophe open parentheses x subscript 0 close parentheses equals limit as increment x rightwards arrow 0 of fraction numerator begin display style fraction numerator 1 over denominator 5 open parentheses x subscript 0 plus increment x close parentheses plus 6 end fraction end style minus begin display style fraction numerator 1 over denominator 5 x subscript 0 plus 6 end fraction end style over denominator increment x end fraction equals limit as increment x rightwards arrow 0 of fraction numerator begin display style fraction numerator 1 over denominator 5 x subscript 0 plus 5 increment x plus 6 end fraction minus fraction numerator 1 over denominator 5 x subscript 0 plus 6 end fraction end style over denominator increment x end fraction equals
equals limit as increment x rightwards arrow 0 of fraction numerator begin display style fraction numerator 5 x subscript 0 plus 6 over denominator open parentheses 5 x subscript 0 plus 5 increment x plus 6 close parentheses open parentheses 5 x subscript 0 plus 6 close parentheses end fraction minus fraction numerator 5 x subscript 0 plus 5 increment x plus 6 over denominator open parentheses 5 x subscript 0 plus 5 increment x plus 6 close parentheses open parentheses 5 x subscript 0 plus 6 close parentheses end fraction end style over denominator increment x end fraction equals

    equals limit as increment x rightwards arrow 0 of fraction numerator begin display style fraction numerator 5 x subscript 0 plus 6 minus open parentheses 5 x subscript 0 plus 5 increment x plus 6 close parentheses over denominator open parentheses 5 x subscript 0 plus 5 increment x plus 6 close parentheses open parentheses 5 x subscript 0 plus 6 close parentheses end fraction end style over denominator increment x end fraction equals limit as increment x rightwards arrow 0 of fraction numerator begin display style fraction numerator 5 x subscript 0 plus 6 minus 5 x subscript 0 minus 5 increment x minus 6 over denominator open parentheses 5 x subscript 0 plus 5 increment x plus 6 close parentheses open parentheses 5 x subscript 0 plus 6 close parentheses end fraction end style over denominator increment x end fraction equals
equals limit as increment x rightwards arrow 0 of fraction numerator begin display style fraction numerator negative 5 increment x over denominator open parentheses 5 x subscript 0 plus 5 increment x plus 6 close parentheses open parentheses 5 x subscript 0 plus 6 close parentheses end fraction end style over denominator increment x end fraction equals limit as increment x rightwards arrow 0 of fraction numerator negative 5 increment x over denominator open parentheses 5 x subscript 0 plus 5 increment x plus 6 close parentheses open parentheses 5 x subscript 0 plus 6 close parentheses end fraction fraction numerator begin display style 1 end style over denominator increment x end fraction equals
equals limit as increment x rightwards arrow 0 of fraction numerator negative 5 over denominator open parentheses 5 x subscript 0 plus 5 increment x plus 6 close parentheses open parentheses 5 x subscript 0 plus 6 close parentheses end fraction equals fraction numerator negative 5 over denominator open parentheses 5 x subscript 0 plus 6 close parentheses open parentheses 5 x subscript 0 plus 6 close parentheses end fraction equals fraction numerator negative 5 over denominator open parentheses 5 x subscript 0 plus 6 close parentheses squared end fraction

    Sprawdzamy prawdziwość tego wyniku korzystając ze wzorów:

    f apostrophe open parentheses x subscript 0 close parentheses equals open parentheses fraction numerator 1 over denominator 5 x subscript 0 plus 6 end fraction close parentheses apostrophe equals open square brackets open parentheses 5 x subscript 0 plus 6 close parentheses to the power of negative 1 end exponent close square brackets apostrophe equals negative 1 times open parentheses 5 x subscript 0 plus 6 close parentheses to the power of negative 1 minus 1 end exponent open parentheses 5 x subscript 0 plus 6 close parentheses apostrophe equals
equals negative 1 open parentheses 5 x subscript 0 plus 6 close parentheses to the power of negative 2 end exponent times 5 equals fraction numerator negative 5 over denominator open parentheses 5 x subscript 0 plus 6 close parentheses squared end fraction

    Czyli wszystko gra 🙂

     

  7. Magda pisze:

    Witam,

    mam problem z rozwiązaniem takiego zadania:

    Oblicz z definicji pochodną f(x)= 1/(5x+6) w punkcie x0. Poprawność sprawdź z wzorów na pochodne.

    Z góry dziękuję za pomoc.

  8. Natalia pisze:

    Panie Krystianie, nie do końca wiem jak obliczyć pochodną z funkcji (2x^6-16x^3)/(x^3-2)^2. Mógłby Pan mi prosze pomóc? 🙂

    1. Pochodna z fraction numerator 2 x to the power of 6 minus 16 x cubed over denominator open parentheses x cubed minus 2 close parentheses squared end fraction.

      Na początku mamy tutaj dzielenie dwóch funkcji, więc zaczynamy od zastosowania wzoru: open parentheses f over g close parentheses apostrophe equals fraction numerator f apostrophe space times g space minus space f times g apostrophe over denominator g squared end fraction

      f equals 2 x to the power of 6 minus 16 x cubed – tutaj spoko, licząc pochodną wykorzystujemy liniowość, czyli pochodna z każdego składnika oddzielnie oraz dwa proste wzory: open square brackets a times f \left parenthesis x \right parenthesis close square brackets apostrophe equals a times open square brackets f \left parenthesis x \right parenthesis close square brackets apostrophe (stała przed pochodną po x-sie), a także wzór:   open parentheses x to the power of n close parentheses apostrophe equals n times x to the power of n minus 1 end exponent.

      g equals open parentheses x cubed minus 2 close parentheses squared – tutaj występuje takie coś jak złożenie funkcji. Masz jakieś wyrażenie podniesione do potęgi drugiej, czyli open parentheses co ś close parentheses to the power of n . Przy liczeniu pochodnej wykorzystujesz wzór na open parentheses x to the power of n close parentheses apostrophe equals n times x to the power of n minus 1 end exponent , z tym, że trzeba pamiętać do DOMNOŻENIU jeszcze pochodnej tego czegoś więcej, tego wyrażenia “coś”, czyli: open parentheses open parentheses co ś close parentheses to the power of n space close parentheses apostrophe equals space n times open parentheses co ś close parentheses to the power of n minus 1 end exponent times open parentheses c o ś close parentheses apostrophe

      No tu wyjdzie ostatecznie:

      open square brackets fraction numerator 2 x to the power of 6 minus 16 x cubed over denominator open parentheses x cubed minus 2 close parentheses squared end fraction close square brackets apostrophe equals fraction numerator open parentheses 2 x to the power of 6 minus 16 x cubed close parentheses apostrophe times space open parentheses x cubed minus 2 close parentheses squared space minus space open parentheses 2 x to the power of 6 minus 16 x cubed close parentheses times space open square brackets open parentheses x cubed minus 2 close parentheses squared close square brackets apostrophe over denominator open square brackets open parentheses x cubed minus 2 close parentheses squared close square brackets squared end fraction equals

      equals fraction numerator open parentheses 2 times 6 times x to the power of 5 minus 16 times 3 times x squared close parentheses times space open parentheses x cubed minus 2 close parentheses squared space minus space open parentheses 2 x to the power of 6 minus 16 x cubed close parentheses times space open square brackets 2 times open parentheses x cubed minus 2 close parentheses to the power of 1 times open parentheses x cubed minus 2 close parentheses apostrophe close square brackets over denominator open parentheses x cubed minus 2 close parentheses to the power of 4 end fraction equals

      equals fraction numerator open parentheses 12 x to the power of 5 minus 48 x squared close parentheses times open parentheses x cubed minus 2 close parentheses squared space minus space open parentheses 2 x to the power of 6 minus 16 x cubed close parentheses times space open square brackets 2 open parentheses x cubed minus 2 close parentheses times open parentheses 3 times x squared minus 0 close parentheses close square brackets over denominator open parentheses x cubed minus 2 close parentheses to the power of 4 end fraction equals

      equals fraction numerator open parentheses 12 x to the power of 5 minus 48 x squared close parentheses times open parentheses x cubed minus 2 close parentheses squared space minus space open parentheses 2 x to the power of 6 minus 16 x cubed close parentheses times space 6 x squared open parentheses x cubed minus 2 close parentheses over denominator open parentheses x cubed minus 2 close parentheses to the power of 4 end fraction equals

      equals fraction numerator open parentheses x cubed minus 2 close parentheses open square brackets open parentheses 12 x to the power of 5 minus 48 x squared close parentheses times open parentheses x cubed minus 2 close parentheses space minus space open parentheses 2 x to the power of 6 minus 16 x cubed close parentheses times space 6 x squared close square brackets over denominator open parentheses x cubed minus 2 close parentheses to the power of 4 end fraction equals

      equals fraction numerator 12 x to the power of 8 minus 24 x to the power of 5 minus 48 x to the power of 5 plus 96 x squared minus space 12 x to the power of 8 plus 96 x to the power of 5 over denominator open parentheses x cubed minus 2 close parentheses cubed end fraction equals fraction numerator 24 x to the power of 5 plus 96 x squared over denominator open parentheses x cubed minus 2 close parentheses cubed end fraction equals fraction numerator bold 24 bold x to the power of bold 2 open parentheses bold x to the power of bold 3 bold plus bold 4 close parentheses over denominator open parentheses bold x to the power of bold 3 bold minus bold 2 close parentheses to the power of bold 3 end fraction

  9. damian pisze:

    x^2+e^x/x-lnx czy pomoze ktoś ?

  10. Kamila pisze:

     WitamMam problem z pochodna x^x jak to obliczyc?

    1. Myślę, że ten filmik będzie baaardzo pomocny i wszystko wyjaśniający (chociaż przykład jest lekko inny) 🙂

       

      W Pani przypadku wyjdzie ostatecznie:

      open parentheses x to the power of x close parentheses apostrophe space equals open parentheses e to the power of ln x to the power of x end exponent close parentheses apostrophe equals space open parentheses e to the power of x times ln x end exponent close parentheses apostrophe equals open parentheses e to the power of x times ln x end exponent close parentheses times open parentheses x times ln x close parentheses apostrophe space equals

      equals open parentheses e to the power of x times ln x end exponent close parentheses times open parentheses open parentheses x close parentheses apostrophe times ln x plus x times open parentheses ln x close parentheses apostrophe close parentheses equals space open parentheses e to the power of x times ln x end exponent close parentheses times open parentheses 1 times ln x plus x times 1 over x close parentheses equals

      equals bold space straight e to the power of straight x times lnx end exponent times open parentheses lnx plus 1 close parentheses space equals space straight e to the power of lnx to the power of x end exponent times open parentheses lnx plus 1 close parentheses space equals space bold italic x to the power of bold x bold times open parentheses bold l bold n bold x bold plus bold 1 close parentheses

  11. Ania pisze:

    Cześć!Mam problem z pochodną 6x(x^2+1)^2 mógłbys wytłumaczyc krok po kroku?

  12. Ewusia pisze:

    Witam serdecznie. Mam problem z pochodną f(x)= 3/((1-x^2)(1-2x^3)). Kalkulator pokazuje odpowiedź: 6x(-5x^3+3x+1)/(mianownik^2).  A w moich obliczeniach wszystko się zgadza oprócz tego, że mam -6x. Ktoś wie co się stało z tym minusem? Proszę o odpowiedź

  13. Anna pisze:

    Witam. Mam problem z policzeniem pochodnej f(x)=ln(x)log_2(x)

  14. Agata pisze:

    Witam, nie rozumiem dlaczego pochodna z funkcji f(x)=e^2x+e^-x wychodzi e^2-e^-x a nie 2e^2x-e^-xBardzo proszę o odp 

  15. Robert pisze:

    Witammam policzyć  pochodne i nie potrafię sobie z nimi poradzić:mogę prosić o pomoc   

  16. Lidia pisze:

    dzień dobry,czy ktoś może wie w jaki sposób krok po kroku obliczyć pochodną poniższej funkcji?y equals fraction numerator x cubed sin open parentheses fourth root of 3 x end root close parentheses over denominator cos open parentheses x close parentheses end fractionBędę wdzięczna za pomoc 🙂

  17. Kasiek pisze:

    Dzień dobry,zasanowiła mnie jedna rzecz. Chcąc sprawdzić wynik pochodnej (-8cos(x)sin(x))’ znalałzam Pana kalkulator i inny. wg Pana kalkulatora wynik to (-8cos(2x)), a to wyszło w innym  (8(sinx)^2 – 8(cosx)^2) – i ja też otrzymałam taki wynik. Mogę prosić o pomoc?To całe zadanie jaki muszę obliczyć: -8cos(x)sin(x)+(e^(x^(1/2))(1- (1/x^(1/2))) /(4x))”Podzieliłam” je na 2 zgodnie z właściwościami pochodnych – [f(x)+g(x)]’ = f'(x)+g'(x) 

    1. “wg Pana kalkulatora wynik to (-8cos(2x)), a to wyszło w innym  (8(sinx)^2 – 8(cosx)^2) – i ja też otrzymałam taki wynik.”

      Pani Kasiu – oba wyniki są poprawne 🙂 Policzyła Pani wszystko prawidłowo.

      Kalkulator zamieszczony na Blogu po prostu dodatkowo dokonał jeszcze jedne przekształcenie, wykorzystując rozpisanie wzoru cos \left parenthesis 2 x \right parenthesis ze szkoły średniej (jak pamiętamy, tam były jego 3 wersje)

      cos \left parenthesis 2 x \right parenthesis equals cos squared x minus sin squared x space equals space 2 cos squared x minus 1 space equals space 1 minus 2 sin squared x – wykorzystana została wersja pierwsza.

      Rozpisując Pani wynik: 

      8 sin squared x space – space 8 cos squared x equals negative 8 times open parentheses negative sin squared x space plus cos squared x close parentheses equals negative 8 open parentheses bold italic c bold italic o bold italic s to the power of bold 2 bold italic x bold minus bold italic s bold italic i bold italic n to the power of bold 2 bold italic x close parentheses equals negative 8 bold italic c bold italic o bold italic s bold \left parenthesis bold 2 bold italic x bold \right parenthesis

  18. Bubi pisze:

    mam problem z pochodną funkcji : left parenthesis 1 plus square root of x \right parenthesis to the power of ln square root of x end exponent

  19. kati pisze:

    square root of 1 minus 3 x hat 2 end root equals… ; 2 to the power of 3 x plus 4 end exponent ln x equals
… proszę o pomoc

    1. kati pisze:

      oczywiście polecenie policz pochodne 

    2. 1. y equals square root of 1 minus 3 x squared end root

      Stosuję wzór open parentheses square root of triangle close parentheses apostrophe equals fraction numerator 1 over denominator 2 square root of triangle end fraction times triangle apostrophe

      y apostrophe equals fraction numerator 1 over denominator 2 square root of 1 minus 3 x squared end root end fraction times open parentheses 1 minus 3 x squared close parentheses apostrophe equals fraction numerator 1 over denominator 2 square root of 1 minus 3 x squared end root end fraction times open parentheses 0 minus 3 times 2 x close parentheses equals

      fraction numerator negative 6 x over denominator 2 square root of 1 minus 3 x squared end root end fraction equals negative fraction numerator 3 x over denominator square root of 1 minus 3 x squared end root end fraction

      2. y equals 2 to the power of 3 x plus 4 end exponent times ln x

      Stosuję wzory: open parentheses u times v close parentheses apostrophe equals u apostrophe times v plus u times v apostrophe oraz open parentheses 2 to the power of triangle close parentheses apostrophe equals 2 to the power of triangle times ln 2 times triangle apostrophe

      y apostrophe equals open parentheses 2 to the power of 3 x plus 4 end exponent close parentheses apostrophe times ln x plus 2 to the power of 3 x plus 4 end exponent times open parentheses ln x close parentheses apostrophe equals 2 to the power of 3 x plus 4 end exponent times ln 2 times open parentheses 3 x plus 4 close parentheses apostrophe times ln x plus 2 to the power of 3 x plus 4 end exponent times 1 over x equals

      2 to the power of 3 x plus 4 end exponent times ln 2 times open parentheses 3 plus 0 close parentheses times ln x plus 2 to the power of 3 x plus 4 end exponent times 1 over x equals 2 to the power of 3 x plus 4 end exponent times open parentheses 3 ln 2 times ln x plus 1 over x close parentheses

  20. Kamil pisze:

    3 ln hat 5 \left parenthesis 3 over x to the power of 4 minus x \right parenthesisWitam mam problem z obliczeniem tej pochodnej mógłby mi ktoś wytłumaczyć jak to zrobić ?

    1. y equals 3 ln to the power of 5 open parentheses 3 over x to the power of 4 minus x close parentheses

      Stosuję wzory open parentheses C times f open parentheses x close parentheses close parentheses apostrophe equals C times f apostrophe open parentheses x close parentheses oraz open parentheses triangle to the power of 5 close parentheses apostrophe equals 5 times triangle to the power of 4 times triangle apostrophe

      y apostrophe equals 3 times open square brackets ln to the power of 5 open parentheses 3 over x to the power of 4 minus x close parentheses close square brackets apostrophe equals 3 times 5 times ln to the power of 4 open parentheses 3 over x to the power of 4 minus x close parentheses times open parentheses 3 over x to the power of 4 minus x close parentheses apostrophe equals

      15 ln to the power of 4 open parentheses 3 over x to the power of 4 minus x close parentheses times open parentheses 3 times x to the power of negative 4 end exponent minus x close parentheses apostrophe equals 15 ln to the power of 4 open parentheses 3 over x to the power of 4 minus x close parentheses times open parentheses 3 times open parentheses negative 4 close parentheses times x to the power of negative 5 end exponent minus 1 close parentheses equals

      15 ln to the power of 4 open parentheses 3 over x to the power of 4 minus x close parentheses times open parentheses negative 12 over x to the power of 5 minus 1 close parentheses equals negative 15 times open parentheses 12 over x to the power of 5 plus 1 close parentheses times ln to the power of 4 open parentheses 3 over x to the power of 4 minus x close parentheses

  21. Mati pisze:

    w kalkulatorze wychodzą bzdury gdy liczy się pochodną pierwiastków:np po wpisaniu (x^2)^-2 czyli square root of cross times squared end root (pochodna to oczywiście 1) wychodzi

    1. Tutaj akurat kalkulator dobrze policzył pochodną 🙂

      Wpisana formuła “(x^2)^-2” (potęga (-2) ) nie oznacza pierwiastka, tylko inna potęgę, a mianowicie:
      open parentheses x squared close parentheses to the power of negative 2 end exponent equals open parentheses 1 over x squared close parentheses squared equals 1 over x to the power of 4 equals x to the power of negative 4 end exponent – minus w potędze odwraca podstawę 🙂

      Aby wprowadzić pierwiastek, trzeba wziąć potęgę ułamkową, czyli powinien Pan wpisać “”(x^2)^(1/2)” 

      Wtedy pochodna:

      open parentheses square root of x squared end root close parentheses apostrophe equals open parentheses fraction numerator 1 over denominator 2 square root of x squared end root end fraction close parentheses times open parentheses x squared close parentheses apostrophe equals fraction numerator 2 x over denominator 2 square root of x squared end root end fraction equals fraction numerator x over denominator square root of x squared end root end fraction equals fraction numerator x over denominator open vertical bar x close vertical bar end fraction equals open curly brackets table attributes columnalign \left end attributes row cell 1 space space space space space space d l a space x greater or equal than 0 end cell row cell negative 1 space space space d l a space x less than 0 end cell end table close

  22. Paulina pisze:

    Witam Panie Krzysztofie,czy mógłby mi Pan pomóc z obliczeniem pochodnej:f \left parenthesis x \right parenthesis equals fifth root of fraction numerator cos squared x over denominator x cubed minus 3 x end fraction end root

    1. y equals fifth root of fraction numerator cos squared x over denominator x cubed minus 3 x end fraction end root

      Stosuję wzory dla pochodnej ułamku:

      open parentheses u over v close parentheses apostrophe equals fraction numerator u apostrophe times v minus u times v apostrophe over denominator v squared end fraction oraz pochodnej funkcji złożonej: 

      open square brackets f open parentheses g open parentheses x close parentheses close parentheses close square brackets apostrophe equals f apostrophe open parentheses g close parentheses times g apostrophe open parentheses x close parentheses

      y equals fifth root of fraction numerator cos squared x over denominator x cubed minus 3 x end fraction end root equals open parentheses fraction numerator cos squared x over denominator x cubed minus 3 x end fraction close parentheses to the power of 1 fifth end exponent. Wtedy

      y apostrophe equals 1 fifth times open parentheses fraction numerator cos squared x over denominator x cubed minus 3 x end fraction close parentheses to the power of 1 fifth minus 1 end exponent times open parentheses fraction numerator cos squared x over denominator x cubed minus 3 x end fraction close parentheses apostrophe equals 1 fifth times open parentheses fraction numerator cos squared x over denominator x cubed minus 3 x end fraction close parentheses to the power of negative 4 over 5 end exponent times

      times fraction numerator open parentheses cos squared x close parentheses apostrophe times open parentheses x cubed minus 3 x close parentheses minus cos squared x times open parentheses x cubed minus 3 x close parentheses apostrophe over denominator open parentheses x cubed minus 3 x close parentheses squared end fraction equals 1 fifth times fraction numerator 1 over denominator fifth root of open parentheses \begin display style fraction numerator cos squared x over denominator x cubed minus 3 x end fraction end style close parentheses to the power of 4 end root end fraction times

      times fraction numerator 2 cos x times open parentheses cos x close parentheses apostrophe times open parentheses x cubed minus 3 x close parentheses minus cos squared x times open parentheses 3 x squared minus 3 close parentheses over denominator open parentheses x cubed minus 3 x close parentheses squared end fraction equals

      1 fifth times fifth root of open parentheses fraction numerator x cubed minus 3 x over denominator cos squared x end fraction close parentheses to the power of 4 end root times fraction numerator 2 cos x times open parentheses negative sin x close parentheses times open parentheses x cubed minus 3 x close parentheses minus cos squared x times open parentheses 3 x squared minus 3 close parentheses over denominator open parentheses x cubed minus 3 x close parentheses squared end fraction equals

      1 fifth times fraction numerator fifth root of open parentheses x cubed minus 3 x close parentheses to the power of 4 end root over denominator fifth root of open parentheses cos squared x close parentheses to the power of 4 end root end fraction times fraction numerator negative cos x times open square brackets 2 sin x times open parentheses x cubed minus 3 x close parentheses plus cos x times open parentheses 3 x squared minus 3 close parentheses close square brackets over denominator fifth root of open parentheses open parentheses x cubed minus 3 x close parentheses squared close parentheses to the power of 5 end root end fraction equals

      equals negative 1 fifth times fraction numerator fifth root of open parentheses x cubed minus 3 x close parentheses to the power of 4 end root over denominator fifth root of cos to the power of 8 x end root end fraction times fraction numerator fifth root of cos to the power of 5 x end root times open square brackets 2 times open parentheses x cubed minus 3 x close parentheses times sin x plus open parentheses 3 x squared minus 3 close parentheses times cos x close square brackets over denominator fifth root of open parentheses x cubed minus 3 x close parentheses to the power of 10 end root end fraction equals

      equals negative 1 fifth times fraction numerator 2 times open parentheses x cubed minus 3 x close parentheses times sin x plus open parentheses 3 x squared minus 3 close parentheses times cos x over denominator fifth root of open parentheses x cubed minus 3 x close parentheses to the power of 6 times cos cubed x end root end fraction

  23. Mike pisze:

    Dzień dobry, chciałem zwrócić uwagę na błąd, gdy w pochodnej funkcji sqrt(3^3 -2) wynikiem jest ((3^x)log(3))/(2(sqrt(3x-2))), gdzie w miejscu log powinno być ln.Pozdrawiam

  24. Justyna pisze:

    Witam, w ostatniej lekcji z kursu pochodnych robił Pan przykład x/lnx, Moje pytanie brzmi skąd w wykresie 2 pochodnej wziął się punkt 1. wklejam juz policzoną 2 pochodną

  25. Mateusz pisze:

    Dzień dobry Panie Krystianie!Czy mógłby mi Pan pomóc w obliczeniu pochodnej z: left parenthesis sin x plus cos x \right parenthesis to the power of 5* fifth root of vertical line a r c sin x plus a r c cos x vertical line end root?

    1. y equals open parentheses sin x plus cos x close parentheses to the power of 5 times fifth root of open vertical bar a r s c i n x plus a r c cos x close vertical bar end root

      Wiadomo, że pochodna liczby stałej wynosi zero:

      C apostrophe equals 0, o ile C equals c o n s t space open parentheses s t a ł a close parentheses

      Obliczymy:

      open parentheses a r c sin x plus a r c cos x close parentheses apostrophe equals open parentheses a r c sin x close parentheses apostrophe plus open parentheses a r c cos x close parentheses apostrophe equals fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction plus open parentheses negative fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction close parentheses equals 0

      Stąd mamy, że a r c sin x plus a r c cos x equals C

      Liczba stała nie zależy od x. Obliczymy ją:

      a r c sin x plus a r c cos x equals C equals a r c sin 0 plus a r c cos 0 equals 0 plus \pi over 2 equals \pi over 2

      Wtedy funkcja

      y equals open parentheses sin x plus cos x close parentheses to the power of 5 times fifth root of open vertical bar a r c sin x plus a r c cos x close vertical bar end root equals fifth root of \pi over 2 end root times open parentheses sin x plus cos x close parentheses to the power of 5,

      i jej pochodna

      (wg wzoru dla funkcji złożonej:  open parentheses triangle to the power of 5 close parentheses apostrophe equals 5 triangle to the power of 4 times open parentheses triangle close parentheses apostrophe   )

      wynosi:

      y apostrophe equals fifth root of \pi over 2 end root times 5 times open parentheses sin x plus cos x close parentheses to the power of 4 times open parentheses sin x plus cos x close parentheses apostrophe equals

      fifth root of \pi over 2 end root times open parentheses sin x plus cos x close parentheses to the power of 4 times open parentheses cos x minus sin x close parentheses

       

  26. Kasia pisze:

    Witam, potrzebuję obliczyć pierwszą pochodną funkcji. Jak to zrobić?i(x) = 3e^2x *lnx

    1. y equals 3 e to the power of 2 x end exponent times ln x

      Stosuję wzory: open parentheses C times y close parentheses apostrophe equals C times y apostrophe (gdzie C – stała) oraz open parentheses u times v close parentheses apostrophe equals u apostrophe times v plus u times v apostrophe, a także

      open parentheses e to the power of triangle close parentheses apostrophe equals e to the power of triangle times triangle apostrophe

      y apostrophe equals 3 times open square brackets open parentheses e to the power of 2 x end exponent close parentheses apostrophe times ln x plus e to the power of 2 x end exponent times open parentheses ln x close parentheses apostrophe close square brackets equals 3 times open square brackets e to the power of 2 x end exponent times open parentheses 2 x close parentheses apostrophe times ln x plus e to the power of 2 x end exponent times 1 over x close square brackets equals

      3 times open parentheses e to the power of 2 x end exponent times 2 times ln x plus e to the power of 2 x end exponent times 1 over x close parentheses equals 3 times e to the power of 2 x end exponent times open parentheses 2 ln x plus 1 over x close parentheses

  27. Leszek pisze:

     Witam,nie wiem czy kalkulator dobrze liczy ale wychodzi że (ln(x))’ = 1/x i to jest dobrze ale wpisując ln(2x) podaje wynik też 1/x czy to jest aby dobrze? Czy nie powinno być 2/x ?Proszę o szybką odpowiedź.

    1. Tutaj wynik jest poprawny, pochodna open parentheses ln \left parenthesis 2 x \right parenthesis close parentheses apostrophe equals 1 over x
      Bierze się to z tego, że jest to złożenie dwóch funkcji  – nie ma Pan samego “x” w logarytmie tylko coś więcej. Przy liczeniu takich pochodnych, najpierw robimy pochodną tej funkcji “zewnętrznej” i domnażamy do niej pochodną funkcji w środku, tej “wewnętrznej”. 

      Ogólnie na wzorach to idzie tak: left parenthesis f \left parenthesis g \left parenthesis x \right parenthesis \right parenthesis apostrophe space equals space f apostrophe \left parenthesis g \left parenthesis x \right parenthesis \right parenthesis space times space g apostrophe \left parenthesis x \right parenthesis

      Przy naszych danych to pójdzie tak: open parentheses ln \left parenthesis increment \right parenthesis close parentheses apostrophe equals 1 over increment times increment apostrophe  , gdzie za ten increment biorę funkcję wewnętrzną.

      Stąd ostatecznie: open parentheses ln \left parenthesis 2 x \right parenthesis close parentheses apostrophe equals fraction numerator 1 over denominator 2 x end fraction times open parentheses 2 x close parentheses apostrophe equals fraction numerator 1 over denominator 2 x end fraction times 2 times 1 equals fraction numerator 2 over denominator 2 x end fraction equals 1 over x

  28. Michał pisze:

    Witam mógłby mi ktoś pomóc obliczyć pochodną funkcji y=cube root of x to the power of 5 end root ln x

    1. y equals cube root of x to the power of 5 end root times ln x equals x to the power of 5 over 3 end exponent times ln x

      Stosuję wzór: open parentheses u times v close parentheses apostrophe equals u apostrophe times v plus u times v apostrophe

      y apostrophe equals open parentheses x to the power of 5 over 3 end exponent close parentheses apostrophe times ln x plus x to the power of 5 over 3 end exponent times open parentheses ln x close parentheses apostrophe equals 5 over 3 times x to the power of 5 over 3 minus 1 end exponent times ln x plus x to the power of 5 over 3 end exponent times 1 over x equals

      5 over 3 times x to the power of 2 over 3 end exponent times ln x plus x to the power of \begin display style 5 over 3 end style end exponent over x equals 5 over 3 times x to the power of 2 over 3 end exponent times ln x plus x to the power of 5 over 3 minus 1 end exponent equals 5 over 3 times x to the power of 2 over 3 end exponent times ln x plus x to the power of 2 over 3 end exponent equals

      x to the power of 2 over 3 end exponent times open parentheses 5 over 3 ln x plus 1 close parentheses equals cube root of x squared end root times open parentheses 5 over 3 ln x plus 1 close parentheses

  29. marco pisze:

    jak obliczyć pochodna funkcjiy= 4x^1/3 * (5 + 2*4^3^x)/x^2 + 1

    1. y equals fraction numerator 4 cube root of x times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses over denominator x squared plus 1 end fraction equals 4 times fraction numerator cube root of x times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses over denominator x squared plus 1 end fraction

      Stosuję wzory:

      open parentheses u over v close parentheses apostrophe equals fraction numerator u apostrophe v minus u v apostrophe over denominator v squared end fraction oraz (pochodna funkcji złożonej) open parentheses 4 to the power of triangle close parentheses apostrophe equals 4 to the power of triangle times ln 4 times open parentheses triangle close parentheses apostrophe, a także

      open parentheses u times v close parentheses apostrophe equals u apostrophe v plus u v apostrophe

      y apostrophe equals 4 times fraction numerator open square brackets cube root of x times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses close square brackets apostrophe times open parentheses x squared plus 1 close parentheses minus cube root of x times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses times open parentheses x squared plus 1 close parentheses apostrophe over denominator open parentheses x squared plus 1 close parentheses squared end fraction equals

      4 times fraction numerator open square brackets open parentheses cube root of x close parentheses apostrophe times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses plus cube root of x times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses apostrophe close square brackets times open parentheses x squared plus 1 close parentheses minus cube root of x times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses times open parentheses 2 x plus 0 close parentheses over denominator open parentheses x squared plus 1 close parentheses squared end fraction equals

      4 times fraction numerator open square brackets open parentheses x to the power of \begin display style 1 third end style end exponent close parentheses apostrophe times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses plus cube root of x times open parentheses 0 plus 2 times 4 to the power of 3 to the power of x end exponent times ln 4 times open parentheses 3 to the power of x close parentheses apostrophe close parentheses close square brackets times open parentheses x squared plus 1 close parentheses minus cube root of x times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses times 2 x over denominator open parentheses x squared plus 1 close parentheses squared end fraction equals

      4 times fraction numerator open square brackets \begin display style 1 third end style x to the power of negative \begin display style 2 over 3 end style end exponent times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses plus x to the power of \begin display style 1 third end style end exponent times 2 times 4 to the power of 3 to the power of x end exponent times ln 4 times 3 to the power of x times ln 3 close square brackets times open parentheses x squared plus 1 close parentheses minus x to the power of \begin display style 1 third end style end exponent times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses times 2 x over denominator open parentheses x squared plus 1 close parentheses squared end fraction equals

      4 times fraction numerator \begin display style 1 third end style x to the power of negative \begin display style 2 over 3 end style end exponent times open square brackets 5 plus 2 times 4 to the power of 3 to the power of x end exponent plus 3 x times 2 times 4 to the power of 3 to the power of x end exponent times 3 to the power of x times ln 4 times ln 3 close square brackets times open parentheses x squared plus 1 close parentheses minus \begin display style 1 third end style x to the power of negative \begin display style 2 over 3 end style end exponent times 3 x times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses times 2 x over denominator open parentheses x squared plus 1 close parentheses squared end fraction equals

      4 times 1 third x to the power of negative 2 over 3 end exponent times fraction numerator open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent plus 6 x times 4 to the power of 3 to the power of x end exponent times 3 to the power of x times ln 4 times ln 3 close parentheses times open parentheses x squared plus 1 close parentheses minus 6 x squared times open parentheses 5 plus 2 times 4 to the power of 3 to the power of x end exponent close parentheses over denominator open parentheses x squared plus 1 close parentheses squared end fraction equals

      4 over 3 x to the power of negative 2 over 3 end exponent times fraction numerator 5 x squared plus 5 plus 2 x squared times 4 to the power of 3 to the power of x end exponent plus 2 times 4 to the power of 3 to the power of x end exponent plus 6 x cubed times 4 to the power of 3 to the power of x end exponent times 3 to the power of x times ln 4 times ln 3 plus 6 x times 4 to the power of 3 to the power of x end exponent times 3 to the power of x times ln 4 times ln 3 minus 30 x squared minus 12 x squared times 4 to the power of 3 to the power of x end exponent over denominator open parentheses x squared plus 1 close parentheses squared end fraction equals

      4 over 3 times fraction numerator negative 25 x squared plus 5 minus 10 x squared times 4 to the power of 3 to the power of x end exponent plus 2 times 4 to the power of 3 to the power of x end exponent plus 6 x cubed times 4 to the power of 3 to the power of x end exponent times 3 to the power of x times ln 4 times ln 3 plus 6 x times 4 to the power of 3 to the power of x end exponent times ln 4 times ln 3 over denominator x to the power of \begin display style 2 over 3 end style end exponent times open parentheses x squared plus 1 close parentheses squared end fraction

       

  30. Klaudia pisze:

    Witam, jak obliczyć pochodną funkcji f(x)= e^(2x+1)/(x-2)

  31. Sylwia pisze:

    Witam, czy mógłby mi Pan wytłumaczyć jak rozwiązać taką pochodną:f(x)=xsinxlnx ?z góry dziękuje i pozdrawiam 🙂

    1. f open parentheses x close parentheses equals x times sin x times ln x

      Znany jest wzór dla pochodnej iloczynu:

      open parentheses u times v close parentheses apostrophe equals u apostrophe v plus u v apostrophe

      Spróbujemy otrzymać wzór dla iloczynu trzech czynników:

      open parentheses u times v times w close parentheses apostrophe equals open square brackets u times open parentheses v times w close parentheses close square brackets apostrophe equals u apostrophe times open parentheses v times w close parentheses plus u times open parentheses v times w close parentheses apostrophe equals u apostrophe times v times w plus u times open parentheses v apostrophe times w plus v times w apostrophe close parentheses equals

      u apostrophe times v times w plus u times v apostrophe times w plus u times v times w apostrophe

      Wtedy:

      f apostrophe open parentheses x close parentheses equals open parentheses x times sin x times ln x close parentheses apostrophe equals x apostrophe times sin x times ln x plus x times open parentheses sin x close parentheses apostrophe times ln x plus x times sin x times open parentheses ln x close parentheses apostrophe equals

      1 times sin x times ln x plus x times cos x times ln x plus x times sin x times 1 over x equals sin x times ln x plus x times cos x times ln x plus sin x

  32. radek pisze:

    (2x-1)^4=8(2x-1)^3 dlaczego tak????

  33. Jack pisze:

    Jak to obliczyć ? f(x)= open parentheses fraction numerator 1 over denominator 2 square root of x end fraction minus 1 close parentheses x squared

  34. Iza pisze:

    f(x)=x^2*(x-2)^2Wytłumaczysz mi jak to policzyłeś, trochę inaczej mam rozpisane z zajęć i się pogubiłam…? Z góry dziękuję 🙂

    1. f open parentheses x close parentheses equals x squared times open parentheses x minus 2 close parentheses squared

      Stosuję wzór:

      open parentheses u times v close parentheses apostrophe equals u apostrophe v plus u v apostrophe oraz (pochodna funkcji złożonej) open parentheses triangle squared close parentheses apostrophe equals 2 triangle times open parentheses triangle close parentheses apostrophe

      f apostrophe open parentheses x close parentheses equals open square brackets x squared times open parentheses x minus 2 close parentheses squared close square brackets apostrophe equals open parentheses x squared close parentheses apostrophe times open parentheses x minus 2 close parentheses squared plus x squared times open square brackets open parentheses x minus 2 close parentheses squared close square brackets apostrophe equals 2 x times open parentheses x minus 2 close parentheses squared plus

      plus x squared times 2 times open parentheses x minus 2 close parentheses times open parentheses x minus 2 close parentheses apostrophe equals 2 x times open parentheses x squared minus 4 x plus 4 close parentheses plus 2 x squared times open parentheses x minus 2 close parentheses times open parentheses 1 minus 0 close parentheses equals

      2 x cubed minus 8 x squared plus 8 x plus 2 x cubed minus 4 x squared equals 4 x cubed minus 12 x squared plus 8 x

      Można było inaczej:

      f open parentheses x close parentheses equals x squared times open parentheses x minus 2 close parentheses squared equals open square brackets x times open parentheses x minus 2 close parentheses close square brackets squared equals open parentheses x squared minus 2 x close parentheses squared equals x to the power of 4 minus 4 x cubed plus 4 x squared

      Wtedy:

      f apostrophe open parentheses x close parentheses equals open parentheses x to the power of 4 minus 4 x cubed plus 4 x squared close parentheses apostrophe equals 4 x cubed minus 4 times 3 x squared plus 4 times 2 x equals 4 x cubed minus 12 x squared plus 8 x

    1. michalaczek pisze:

      czy moge zapisac w postaci log subscript e e to the power of 5 equals 5  ???

  35. michalaczek pisze:

    1) f(x)=e to the power of negative x end exponent2) f(x)=ln to the power of 8 x3) f(x)=ln(5 x to the power of 4 minus x plus 9)

  36. michalaczek pisze:

    odp do f(x)=square root of 4 x to the power of 7 plus 1 end root  to  fraction numerator 14 x cubed over denominator square root of 4 x to the power of 7 plus 1 end root end fraction   ???

    1. f open parentheses x close parentheses equals square root of 4 x to the power of 7 plus 1 end root

      Stosuję wzór na pochodne funkcji złożonej:

      open parentheses square root of triangle close parentheses apostrophe equals fraction numerator 1 over denominator 2 square root of triangle end fraction times open parentheses triangle close parentheses apostrophe

      f apostrophe open parentheses x close parentheses equals fraction numerator 1 over denominator 2 square root of 4 x to the power of 7 plus 1 end root end fraction times open parentheses 4 x to the power of 7 plus 1 close parentheses apostrophe equals fraction numerator 4 times 7 x to the power of 6 plus 0 over denominator 2 square root of 4 x to the power of 7 plus 1 end root end fraction equals fraction numerator 28 x to the power of 6 over denominator 2 square root of 4 x to the power of 7 plus 1 end root end fraction equals fraction numerator 14 x to the power of 6 over denominator square root of 4 x to the power of 7 plus 1 end root end fraction

    1. Tutaj jest do policzenia pochodna funkcji złożonej, czyli argumentem nie jest sam „x” tylko coś więcej, nie ma po prostu e to the power of x tylko e to the power of c o ś end exponent
      Postępujemy jak zawsze w takich przypadkach, czyli: pochodna tego co „na zewnątrz” pomnożyć razy pochodna funkcji wewnętrznej (coś więcej niż sam „x”), czyli jakby open parentheses e to the power of increment close parentheses apostrophe equals e to the power of increment times increment apostrophe .

      Stąd: open parentheses e to the power of 8 x end exponent close parentheses apostrophe equals e to the power of 8 x end exponent times open parentheses 8 x close parentheses apostrophe equals e to the power of 8 x end exponent times 8 times 1 equals 8 e to the power of 8 x end exponent 

  37. michalaczek pisze:

    square root of blank end root da wpisać się do kalkulatora?

    1. Tak, “pierwiastek” można wpisać na dwa sposoby

      1) wpisując: \sqrt(…)  , np \sqrt(2x) oznacza square root of 2 x end root

      2) wpisując potęgę ułamkową , tzn. (…)^(1/2)  , np (x)^(1/2) oznacza square root of x

  38. michalaczek pisze:

    jak rozwiazac:1) f(x)=bevelled fraction numerator a r c space cos space x over denominator x end fraction2) f(x)=bevelled fraction numerator a r c space sin space x over denominator x end fractionz góry bardzo dziękuje!

    1. 1. f open parentheses x close parentheses equals fraction numerator a r c cos x over denominator x end fraction

      Skorzystam ze wzoru:

      open parentheses u over v close parentheses apostrophe equals fraction numerator u apostrophe v minus u v apostrophe over denominator v squared end fraction

      f apostrophe open parentheses x close parentheses equals open parentheses fraction numerator a r c cos x over denominator x end fraction close parentheses apostrophe equals fraction numerator open parentheses a r c cos x close parentheses apostrophe times x minus a r c cos x times open parentheses x close parentheses apostrophe over denominator x squared end fraction equals

      fraction numerator negative \begin display style fraction numerator 1 over denominator square root of 1 minus x squared end root end fraction end style times x minus a r c cos x times 1 over denominator x squared end fraction equals negative fraction numerator \begin display style fraction numerator x over denominator square root of 1 minus x squared end root end fraction end style plus a r c cos x over denominator x squared end fraction equals

      negative fraction numerator x plus square root of 1 minus x squared end root times a r c cos x over denominator x squared times square root of 1 minus x squared end root end fraction

  39. Karolina pisze:

    czy mógłby ktoś mi pomóc z rozwiązaniem pochodnej: (x^2)/(2-x) ?
    Kalkulator wylicza to jako: [-(x-4)x]/[(x-2)^2]
    Ja wyliczam już czwarty raz i za każdym wychodzi mi taki sam wynik [(4-x)x]/[(2-x)^2], niestety inny niż kalkulatora 🙁
    proszę o pomoc!

    1. Joanna Grochowska pisze:

      Oba wyniki są poprawne i oba są identyczne 🙂

      Po prostu ten z kalkulatora wyliczony “wyciągnął” jeszcze minusy z każdego z wyrażeń.

      Przekształcę więc je tak, że na górze wciągnę go z powrotem, a na dole jakby go wyciągnę jeszcze raz (bo podniesiony do kwadratu się zredukował). Proszę popatrzeć:

      \displaystyle \frac{{-(x-4)x}}{{{{{(x-2)}}^{2}}}}=\frac{{(-x+4)x}}{{{{{\left[ {-(-x+2)} \right]}}^{2}}}}=\frac{{(4-x)x}}{{{{{(-1)}}^{2}}{{{(2-x)}}^{2}}}}=\frac{{(4-x)x}}{{{{{(2-x)}}^{2}}}}

      No i wyszedł Pani wynik 🙂

    2. Karolina pisze:

      jeju, rzeczywiście, ale głupi błąd! 😛
      Bardzo dziękuje, juz rozumiem 😉

  40. Julia pisze:

    Witam, nie rozumiem dlaczego pochodna ln2x^2 to y'(x) = (2 log(2 x))/x

  41. Matematyk pisze:

    Bardzo pomocny kalkulator pochodnych funkcji, przydatny szczególnie do sprawdzania wyników.

  42. Paulina pisze:

    Witam 🙂 Dlaczego pochodna z e^(2^x)=2^x*e^(2^x)*log2?

    1. Tutaj jest do policzenia pochodna funkcji złozonej, czyli argumentem nie jest sam „x” tylko coś więcej, nie ma po prostu e to the power of x tylko e to the power of c o ś end exponent.
      Postępujemy jak zawsze w takich przypadkach, czyli: pochodna tego co „na zewnątrz” pomnożyć razy pochodna funkcji wewnętrznej (coś więcej niż sam „x”), czyli jakby open parentheses e to the power of increment close parentheses apostrophe equals e to the power of increment times increment apostrophe

      Stąd: open parentheses e to the power of 2 to the power of x end exponent close parentheses apostrophe equals e to the power of 2 to the power of x end exponent times open parentheses 2 to the power of x close parentheses apostrophe equals e to the power of 2 to the power of x end exponent times 2 to the power of x times ln 2 , gdyż wprost z wzorku  open parentheses a to the power of x close parentheses apostrophe equals a to the power of x times ln a .

  43. studentekonomi pisze:

    Witam. Mam problem z zadaniem: f(x1,x2)=1/2ln(5×1^2-2×2). Jak mogę narysować krzywe w punktach 0, 1 i 2? Wytyczenie pochodnej i całki również by się przydało…

  44. Iulia pisze:

    Dzień dobry, bardzo prosiłabym o pomóc z przykładem [((arctgX^2)^3)/((e^3)*x+3^x)]^(arctg(x^4-ln(2x^8+1) Czyli iloraz w tym kwadratowym nawiasie podnosimy do potęgi i z tego wszystkiego policzyć pochodną…wychodzą mi kosmiczne rozwiazania…Z góry dziękuję.

  45. Kasia pisze:

    Panie Krystianie,
    może jest mi Pan w stanie wytłumaczyć dlaczego pochodna z -arctg|x| ma pochodną -x/(|x^3|+|x|), a nie po prostu -1/(1+x^2)?

    Byłabym bardzo wdzięczna za pomoc 🙂

    1. Joanna Grochowska pisze:

      Pani Kasiu, gdyby do policzenia byłaby pochodna po prostu z \displaystyle -arctgxto byłaby równa rzeczywiście \displaystyle -\frac{1}{{1+{{x}^{2}}}}

      Jednak tutaj do policzenia jest pochodna \displaystyle -arctg\left| x \right|, czyli argumentem nie jest sam “x” tylko coś więcej – moduł z “x”.

      Postępujemy jak zawsze w takich przypadkach, czyli: pochodna tego co “na zewnątrz” pomnożyć razy pochodna funkcji wewnętrznej (coś więcej niż sam “x”), czyli jakby \displaystyle \left( {-arctg\Delta } \right)’\cdot \Delta ‘

      Pytanie, ile wynosi pochodna modułu z x ?

      Rozpisując moduł, wiem, że:
      open vertical bar x close vertical bar equals open curly brackets table attributes columnalign \left end attributes row cell x comma space space space space space space space space x greater or equal than 0 end cell row cell negative x comma space space space space space x less than 0 end cell end table close

      Czyli odpowiednio pochodna byłby równa 1 lub -1.. Jednak potrzebuję pochodnej w ogólnym przypadku (nie na przedziałach).

      Dlatego uznaje się, że pochodna modułu to (warto zapamiętać ten wzór):

      \displaystyle \left( {\left| x \right|} \right)’=\frac{x}{{\left| x \right|}}

      Można sobie rozpisać na odpowiednich przedziałach i faktycznie wyjdzie 1 lub -1 😉

      Mając wszystko, liczę:

      \displaystyle \left( {-arctg\left| x \right|} \right)’=-\frac{1}{{1+{{{\left| x \right|}}^{2}}}}\cdot \left( {\left| x \right|} \right)’=-\frac{1}{{1+{{{\left| x \right|}}^{2}}}}\cdot \frac{x}{{\left| x \right|}}=-\frac{x}{{\left| x \right|+{{{\left| x \right|}}^{3}}}}

  46. Kamil pisze:

    Mam wielką prośbę. Nie moge poradzić sobie z monotonicznością tej funkcji x^3/(x^2+-x-2) będę ogromnie wdzięczny za odpowiedz. Pozdrawiam 🙂

    1. Kamil pisze:

      x^3/(x^2-x-2) wyzej jest mały bląd

    2. Anna Zalewska pisze:

      Dana jest funkcja f \left parenthesis x \right parenthesis equals fraction numerator x cubed over denominator x squared minus x minus 2 end fraction.

      Zaczynamy od wyznaczenia dziedziny funkcji.

      x squared minus x minus 2 not equal to 0
      capital delta equals \left parenthesis negative 1 \right parenthesis squared minus 4 times 1 times \left parenthesis negative 2 \right parenthesis equals 9
      x subscript 1 equals fraction numerator 1 minus square root of 9 over denominator 2 end fraction equals fraction numerator 1 minus 3 over denominator 2 end fraction equals fraction numerator negative 2 over denominator 2 end fraction equals negative 1
      space x subscript 2 equals fraction numerator 1 plus square root of 9 over denominator 2 end fraction equals fraction numerator 1 plus 3 over denominator 2 end fraction equals 4 over 2 equals 2

      Zatem D equals straight real numbers \backslash \left curly bracket negative 1 comma 2 \right curly bracket.

      Przechodzimy do wyznaczania monotoniczności funkcji f. W tym celu obliczymy jej pochodną i sprawdzimy, kiedy jest dodatnia, a kiedy ujemna.

      f apostrophe \left parenthesis x \right parenthesis equals fraction numerator open parentheses x cubed close parentheses apostrophe times open parentheses x squared minus x minus 2 close parentheses minus x cubed times open parentheses x squared minus x minus 2 close parentheses apostrophe over denominator open parentheses x squared minus x minus 2 close parentheses squared end fraction equals
      equals fraction numerator 3 x squared times open parentheses x squared minus x minus 2 close parentheses minus x cubed times open parentheses 2 x minus 1 close parentheses over denominator open parentheses x squared minus x minus 2 close parentheses squared end fraction equals fraction numerator 3 x to the power of 4 minus 3 x cubed minus 6 x squared minus 2 x to the power of 4 plus x cubed over denominator open parentheses x squared minus x minus 2 close parentheses squared end fraction equals
      equals fraction numerator x to the power of 4 minus 2 x cubed minus 6 x squared over denominator open parentheses x squared minus x minus 2 close parentheses squared end fraction

      Zbadamy teraz, kiedy pochodna przyjmuje wartości większe lub równe 0, a kiedy mniejsze lub równe 0.

      fraction numerator x to the power of 4 minus 2 x cubed minus 6 x squared over denominator open parentheses x squared minus x minus 2 close parentheses squared end fraction greater or equal than 0

      x to the power of 4 minus 2 x cubed minus 6 x squared greater or equal than 0

      x squared open parentheses x squared minus 2 x minus 6 close parentheses greater or equal than 0

      capital delta subscript 1 equals \left parenthesis negative 2 \right parenthesis squared minus 4 times 1 times \left parenthesis negative 6 \right parenthesis equals 28
      x subscript 1 equals fraction numerator 2 minus square root of 28 over denominator 2 end fraction equals fraction numerator 2 minus 2 square root of 7 over denominator 2 end fraction equals 1 minus square root of 7
      x subscript 2 equals fraction numerator 2 plus square root of 28 over denominator 2 end fraction equals fraction numerator 2 plus 2 square root of 7 over denominator 2 end fraction equals 1 plus square root of 7
      wykres

      Pochodna przyjmuje wartości większe lub równe 0 dla x element of \left parenthesis negative infinity comma 1 minus square root of 7 greater than oraz dla x element of less than 1 plus square root of 7 comma space plus infinity \right parenthesis
      Pochodna przyjmuje wartości mniejsze lub równe 0 dla x element of less than 1 minus square root of 7 comma 1 plus square root of 7 greater than

       

      Należy pamiętać o założeniach dziedziny: D equals straight real numbers \backslash \left curly bracket negative 1 comma 2 \right curly bracket.

       

      Zatem podana funkcja jest rosnąca w przedziałach x element of \left parenthesis negative infinity comma 1 minus square root of 7 greater thanx element of less than 1 plus square root of 7 comma space plus infinity \right parenthesis oraz malejąca w przedziałach x element of less than 1 minus square root of 7 comma negative 1 \right parenthesisx element of open parentheses negative 1 comma 2 close parenthesesx element of \left parenthesis 2 comma space 1 plus square root of 7 greater than.

  47. Klaudia pisze:

    Witam! Mam taką funkcję :
    f(x) = (2x-x^2)^(2/3). Jak obliczyć pochodną takiej funkcji?

    1. Joanna Grochowska pisze:

      By obliczyć pochodną z funkcji \displaystyle {{(2x-{{x}^{2}})}^{{\frac{2}{3}}}} stosuję wzór

      \displaystyle \left( {{{x}^{n}}} \right)’=n\cdot {{x}^{{n-1}}}, gdzie jak zauważam, mam coś więcej niż sam “x”, mam dodatkową funkcję (zwaną funkcją wewnętrzną). W taki przypadku obliczoną pochodną przemnażamy przez pochodną funkcji wewnętrznej, czyli mam jakby:

      \displaystyle \left( {{{\Delta }^{n}}} \right)’=n\cdot {{\Delta }^{{n-1}}}\cdot \Delta ‘

      Mam więc:
      \displaystyle \left( {{{{(2x-{{x}^{2}})}}^{{\frac{2}{3}}}}} \right)’=\frac{2}{3}{{(2x-{{x}^{2}})}^{{\frac{2}{3}-1}}}\cdot (2x-{{x}^{2}})’=\frac{2}{3}{{(2x-{{x}^{2}})}^{{-\frac{1}{3}}}}\cdot (2-2x)=\frac{{2\cdot (2-2x)}}{{3\sqrt[3]{{2x-{{x}^{2}}}}}}[/latex]

  48. Karim pisze:

    Witam wszystkich. I proszę o pomoc.
    Mam problem z taką pochodną
    f(x)=[1-sin(2x)]/[2x^4+7x^2-3] Zatrzymuje się w pewnym momencie i nie wiem co dalej. Kalkulator do pochodnych stworzonego przez Pana Krystiana błędnie odczytuje ostatnia część 7x^2-3 zamiast zrobić wszystko w potędze obejmuje liczbę trzy od reszty za potęga. Proszę o pomoc

    1. Joanna Grochowska pisze:

      To nie chodzi Panu o pochodną funkcji \displaystyle \frac{{1-sin(2x)}}{{2{{x}^{4}}+7{{x}^{2}}-3}}?

      A może \displaystyle \frac{{1-sin(2x)}}{{2{{x}^{4}}+{{7}^{{{{x}^{2}}-3}}}}}, czy jeszcze inaczej? Proszę może gdzieś nawias () wstawić dodatkowo, to co ma być ujęte w potędze, bo nie do końca rozumiem o co chodzi z
      “część 7x^2-3 zamiast zrobić wszystko w potędze obejmuje liczbę trzy od reszty za potęga”.

      Pozdrawiam

  49. aga pisze:

    Witam, mam problem z pochodną: e^(3x+2)*((x^6)+4). Nie mam pojęcia jak to rozwiązać, bardzo proszę o pomoc…

    1. Joanna Grochowska pisze:

      Wykorzystuję tutaj wzór na iloczyn dwóch funkcji

      \displaystyle \left( {f\cdot g} \right)’=f’\cdot g+f\cdot g’

      Muszę również pamiętać o tym, że licząc pochodną funkcji złożonej, muszę domnożyć jeszcze razy pochodna funkcji wewnętrznej, tego “coś więcej niż sam x” . to znaczy

      \displaystyle \left( {{{e}^{\Delta }}} \right)’={{e}^{\Delta }}\cdot \Delta ‘

      No to rozwiązując przykład:
      \displaystyle \begin{matrix}\left( {{{e}^{{3x+2}}}\cdot ({{x}^{6}}+4)} \right)’=\left( {{{e}^{{3x+2}}}} \right)’\cdot ({{x}^{6}}+4)+{{e}^{{3x+2}}}\cdot ({{x}^{6}}+4)’= \\ {{e}^{{3x+2}}}\cdot (3x+2)’\cdot ({{x}^{6}}+4)+{{e}^{{3x+2}}}\cdot (6{{x}^{5}}+0)={{e}^{{3x+2}}}\cdot 3\cdot ({{x}^{6}}+4)+{{e}^{{3x+2}}}\cdot 6{{x}^{5}}= \\ 3{{e}^{{3x+2}}}\cdot \left( {{{x}^{6}}+4+2{{x}^{5}}} \right)=3{{e}^{{3x+2}}}\cdot \left( {{{x}^{6}}+2{{x}^{5}}+4} \right)\end{matrix}

  50. Andzia pisze:

    Pochodna z: cos^2\pierwiastek z x +sin^2\pierwiastek z x.

    1. Joanna Grochowska pisze:

      Czyli chodzi o pochodną funkcji \displaystyle {{cos }^{2}}\sqrt{x}+{{sin }^{2}}\sqrt{x}?

      No to liczę:
      \displaystyle \begin{matrix}\left( {{{{cos }}^{2}}\sqrt{x}+{{{sin }}^{2}}\sqrt{x}} \right)’=2cos \sqrt{x}\cdot \left( {cos \sqrt{x}} \right)’+2sin \sqrt{x}\cdot \left( {sin \sqrt{x}} \right)’= \\ 2cos \sqrt{x}\cdot (-sin \sqrt{x})\cdot \left( {\sqrt{x}} \right)’+2sin \sqrt{x}\cdot cos \sqrt{x}\cdot \left( {\sqrt{x}} \right)’= \\-2sin \sqrt{x}cos \sqrt{x}\cdot \frac{1}{{2\sqrt{x}}}+2sin \sqrt{x}\cdot cos \sqrt{x}\cdot \frac{1}{{2\sqrt{x}}}=0\end{matrix}

  51. Misia pisze:

    Dzień dobry panie Krystianie, czy mogłabym liczyć na pomoc w policzeniu pochodnej e^-x^2
    Z góry dziękuję i pozdrawiam

    1. Joanna Grochowska pisze:

      Pochodna funkcji \displaystyle y={{e}^{-}}^{{{{x}^{2}}}}

      Jest to funkcja złożona, licząc jej pochodną, liczę pochodną funkcji “zewnętrznej”, czyli e^(coś) i muszę domnożyć jeszcze ją razy pochodna funkcji wewnętrznej, tego „coś więcej niż sam x” . to znaczy

      \displaystyle \left( {{{e}^{\Delta }}} \right)’={{e}^{\Delta }}\cdot \Delta ‘

      Mam:

      \displaystyle \left( {{{e}^{-}}^{{{{x}^{2}}}}} \right)’={{e}^{-}}^{{{{x}^{2}}}}\cdot \left( {-{{x}^{2}}} \right)’={{e}^{-}}^{{{{x}^{2}}}}\cdot \left( {-2x} \right)=-2x{{e}^{-}}^{{{{x}^{2}}}}

  52. ela pisze:

    Witam a jak to rozwiązać ? :/ (x+1)(x+4)

    1. Joanna Grochowska pisze:

      f(x)=(x+1)(x+4)

      Pochodną tego można policzyć tak na prawdę na dwa sposoby:

      I SPOSÓB – z pochodnej iloczynu \displaystyle \left( {f\cdot g} \right)’=f’\cdot g+f\cdot g’

      \displaystyle \begin{matrix}\left( {\text{(x+1)(x+4)}} \right)\text{ }!!’!!\text{ =(x+1) }!!’!!\text{ }\cdot \text{(x+4)}+\text{(x+1)}\cdot \text{(x+4) }!!’!!\text{ =(1+0)}\cdot \text{(x+4)}+\text{(x+1)}\cdot \text{(1+0)=}\text{x+4+x+1=2x+5}\end{matrix}

      II SPOSÓB – przemnożyć przez siebie te dwa nawiasy (bez problemu mogę, gdyż w jednym jak i w drugim jest wielomian) i potem policzyć pochodną otrzymanego wielomianu korzystając z wzoru \displaystyle \left( {{{x}^{n}}} \right)’=n\cdot {{x}^{{n-1}}}

      \displaystyle \text{(x+1)(x+4)}={{x}^{2}}+4x+x+4={{x}^{2}}+5x+4

      \displaystyle \left( {{{x}^{2}}+5x+4} \right)’=\left( {{{x}^{2}}} \right)’+\left( {5x} \right)’+\left( 4 \right)’=2x+5\cdot 1+0=2x+5

  53. Lidka pisze:

    Witam Panie Krystianie. Czy w wyznaczaniu pochodnych takie cos jak: e^pi , traktujemy jako liczbę czyli wynik to zero czy w inny sposób?

    Dziękuje za odpowiedz
    Pozdrawiam

    1. Joanna Grochowska pisze:

      Tak dokładnie, traktujemy to wyrażenie jako liczbę (nie ma Pani tutaj żadnej zmiennej „x”, tylko same stałe), więc pochodna tego to zero 🙂

  54. Czy ktoś by mógł mi pomóc w rozwiązaniu tych pochodnych?

    y=e^(1/cosx)
    y=a/2(e^(x/a)+e^(-(x/a)))
    y=arcsin(e^4x )
    y=e^√(7x^2 )
    y=log_7cos√(1+x)

    1. Joanna Grochowska pisze:

      Przykład pierwszy: \displaystyle y={{e}^{{\frac{1}{{cos x}}}}}

      Jest to funkcja złożona, liczę pochodną funkcji „zewnętrznej”, czyli e^(coś) i muszę domnożyć jeszcze ją razy pochodna funkcji wewnętrznej, tego „coś więcej niż sam x” . To znaczy

      \displaystyle \left( {{{e}^{\Delta }}} \right)’={{e}^{\Delta }}\cdot \Delta ‘

      Mam:
      \displaystyle \left( {{{e}^{{\frac{1}{{cos x}}}}}} \right)’={{e}^{{\frac{1}{{cos x}}}}}\cdot \left( {\frac{1}{{cos x}}} \right)’

      Pochodną \displaystyle \left( {\frac{1}{{cos x}}} \right)’można policzyć np z wzoru na iloraz dwóch funkcji
      \displaystyle \left( {\frac{f}{g}} \right)’=\frac{{f’\cdot g-f\cdot g’}}{{{{g}^{2}}}}


      {e^{\frac{1}{{\cos x}}}}\frac{{1′ \cdot \cos x – 1 \cdot {{\left( {\cos x} \right)}^\prime }}}{{{{\cos }^2}x}} = {e^{\frac{1}{{\cos x}}}}\frac{{ – \left( { – \sin x} \right)}}{{{{\cos }^2}x}} = \frac{{{e^{\frac{1}{{\cos x}}}}\sin x}}{{{{\cos }^2}x}}

    2. Joanna Grochowska pisze:

      Przykład drugi: \displaystyle y=\frac{a}{2}({{e}^{{^{{\frac{x}{a}}}}}}+{{e}^{{-\frac{x}{a}}}})

      Jak rozumiem, liczbę “a” traktuję jako pewną stałą?

      No to liczę pochodną, stosując wzór: \displaystyle \left( {{{e}^{\Delta }}} \right)’={{e}^{\Delta }}\cdot \Delta ‘

      \displaystyle y’=\left( {\frac{a}{2}({{e}^{{^{{\frac{x}{a}}}}}}+{{e}^{{-\frac{x}{a}}}})} \right)’=\frac{a}{2}\left( {{{e}^{{^{{\frac{x}{a}}}}}}+{{e}^{{-\frac{x}{a}}}}} \right)’=\frac{a}{2}\left[ {\left( {{{e}^{{^{{\frac{x}{a}}}}}}} \right)’+\left( {{{e}^{{-\frac{x}{a}}}}} \right)’} \right]=
      \displaystyle \frac{a}{2}\left[ {{{e}^{{^{{\frac{x}{a}}}}}}\left( {\frac{x}{a}} \right)’+{{e}^{{^{{-\frac{x}{a}}}}}}\left( {-\frac{x}{a}} \right)’} \right]=\frac{a}{2}\left[ {{{e}^{{^{{\frac{x}{a}}}}}}\cdot \frac{1}{a}\cdot 1+{{e}^{{^{{-\frac{x}{a}}}}}}\cdot \left( {-\frac{1}{a}} \right)\cdot 1} \right]=
      \displaystyle \frac{a}{2}\cdot \frac{1}{a}\left( {{{e}^{{^{{\frac{x}{a}}}}}}-{{e}^{{^{{-\frac{x}{a}}}}}}} \right)=\frac{1}{2}\left( {{{e}^{{^{{\frac{x}{a}}}}}}-{{e}^{{^{{-\frac{x}{a}}}}}}} \right)

      Można ewentualnie trochę przekształcić wynik i otrzymać:
      \displaystyle \frac{1}{2}\left( {{{e}^{{^{{\frac{x}{a}}}}}}-{{e}^{{^{{-\frac{x}{a}}}}}}} \right)=\frac{1}{2}\left( {{{e}^{{^{{\frac{{2x}}{a}-\frac{x}{a}}}}}}-{{e}^{{^{{-\frac{x}{a}}}}}}} \right)=\frac{1}{2}{{e}^{{^{{-\frac{x}{a}}}}}}\left( {{{e}^{{^{{\frac{{2x}}{a}}}}}}-1} \right)

    3. Joanna Grochowska pisze:

      Przykład trzeci: chodzi o \displaystyle y=arcsin({{e}^{4}}\cdot x) czy może \displaystyle y=arcsin({{e}^{{4x}}})

      Pierwszy przypadek:

      \displaystyle \left( {arcsin({{e}^{4}}\cdot x)} \right)’=\frac{1}{{\sqrt{{1-{{{({{e}^{4}}\cdot x)}}^{2}}}}}}\cdot \left( {{{e}^{4}}\cdot x} \right)’=\frac{1}{{\sqrt{{1-{{{({{e}^{4}}\cdot x)}}^{2}}}}}}\cdot {{e}^{4}}\left( x \right)’=\frac{{{{e}^{4}}}}{{\sqrt{{1-{{e}^{8}}{{x}^{2}}}}}}

      Drugi przypadek:

      \displaystyle \left( {arcsin({{e}^{{4x}}})} \right)’=\frac{1}{{\sqrt{{1-{{{({{e}^{{4x}}})}}^{2}}}}}}\cdot \left( {{{e}^{{4x}}}} \right)’=\frac{1}{{\sqrt{{1-{{e}^{{8x}}}}}}}\cdot {{e}^{{4x}}}\left( {4x} \right)’=\frac{{4{{e}^{{4x}}}}}{{\sqrt{{1-{{e}^{{8x}}}}}}}

    4. Joanna Grochowska pisze:

      Przykład czwarty: \displaystyle y={{e}^{{\sqrt{{7{{x}^{2}}}}}}}

      Mamy tutaj złożenie kilku funkcji, dlatego korzystam z następujących wzorów:

      \displaystyle \left( {{{e}^{\Delta }}} \right)’={{e}^{\Delta }}\cdot \Delta ‘

      \displaystyle \left( {\sqrt{\Delta }} \right)’=\frac{1}{{2\sqrt{\Delta }}}\cdot \Delta ‘

      gdzie znaczek \displaystyle \Delta oznacza po prostu “coś więcej niż sam x”.

      \displaystyle y’=\left( {{{e}^{{\sqrt{{7{{x}^{2}}}}}}}} \right)’={{e}^{{\sqrt{{7{{x}^{2}}}}}}}\cdot \left( {\sqrt{{7{{x}^{2}}}}} \right)’={{e}^{{\sqrt{{7{{x}^{2}}}}}}}\cdot \frac{1}{{2\sqrt{{7{{x}^{2}}}}}}\cdot \left( {7{{x}^{2}}} \right)’=\frac{{{{e}^{{\sqrt{{7{{x}^{2}}}}}}}}}{{2\sqrt{{7{{x}^{2}}}}}}\cdot 7\cdot 2x=\frac{{7x{{e}^{{\sqrt{{7{{x}^{2}}}}}}}}}{{\sqrt{{7{{x}^{2}}}}}}

    5. Joanna Grochowska pisze:

      Przykład piąty: \displaystyle lo{{g}_{7}}cos\sqrt{{1+x}}

      Tym razem mamy pochodną logarytmu, gdzie pod wyrażeniem logarytmowanym jest coś więcej niż sam x (oznaczam to przez \displaystyle \Delta ). Funkcja jest złożona i to kilkukrotnie. Dlatego stosuję na początku wzór :

      \displaystyle \left( {{{{log }}_{a}}\Delta } \right)’=\frac{1}{{\Delta ln a}}\cdot \Delta’

      Obliczając kolejne pochodne, Mam więc:

      \displaystyle \left( {{{{log }}_{7}}cos \sqrt{{1+x}}} \right)’=\frac{1}{{cos \sqrt{{1+x}}\cdot ln 7}}\cdot \left( {cos \sqrt{{1+x}}} \right)’=

      \displaystyle \frac{1}{{cos \sqrt{{1+x}}\cdot ln 7}}\cdot \left( {-sin \sqrt{{1+x}}} \right)\cdot \left( {\sqrt{{1+x}}} \right)’=

      \displaystyle -\frac{{sin \sqrt{{1+x}}}}{{cos \sqrt{{1+x}}\cdot ln 7}}\cdot \frac{1}{{2\sqrt{{1+x}}}}\cdot \left( {1+x} \right)’=

      \displaystyle -tg\sqrt{{1+x}}\cdot \frac{1}{{2\cdot ln 7\cdot \sqrt{{1+x}}}}\cdot \left( {0+1} \right)=-\frac{{tg\sqrt{{1+x}}}}{{2ln 7\cdot \sqrt{{1+x}}}}

  55. paulina pisze:

    dlaczego pochodna z -x/(x-1)^2 wychodzi y'(x) = (x+1)/(x-1)^3

    1. Joanna Grochowska pisze:

      Stosuję tutaj wzór na pochodną ilorazu dwóch funkcji, czyli
      \displaystyle \left( {\frac{f}{g}} \right)’=\frac{{f’\cdot g-f\cdot g’}}{{{{g}^{2}}}}

      No to rozpisując przykład:
      \displaystyle \left( {\frac{{-x}}{{{{{(x-1)}}^{2}}}}} \right)’=\frac{{\left( {-x} \right)’\cdot {{{(x-1)}}^{2}}-\left( {-x} \right)\cdot \left[ {{{{(x-1)}}^{2}}} \right]’}}{{{{{\left[ {{{{(x-1)}}^{2}}} \right]}}^{2}}}}=\frac{{\left( {-1} \right)\cdot {{{(x-1)}}^{2}}+x\cdot 2\cdot (x-1)\cdot (x-1)’}}{{{{{(x-1)}}^{4}}}}=\frac{{-{{{(x-1)}}^{2}}+2x\cdot (x-1)\cdot 1}}{{{{{(x-1)}}^{4}}}}=\frac{{(x-1)\cdot \left[ {-(x-1)+2x} \right]}}{{{{{(x-1)}}^{4}}}}=\frac{{-x+1+2x}}{{{{{(x-1)}}^{3}}}}=\frac{{x+1}}{{{{{(x-1)}}^{3}}}}

  56. Tomek pisze:

    Cześć
    Mam prośbę w sprawie rozwiązania równania różniczkowego metodą analityczną (krok po kroku):
    y`-0,5y=xe^(2x)
    z góry dziękuję

  57. dominika pisze:

    Chciałabym dowiedzieć się jak wyszedł ten wynik:y'(x) = 3 x^2 cos(1-x^2)+2 x^4 sin(1-x^2) z funkcji x^3cos(x^2-1)

    1. Joanna Grochowska pisze:

      Tutaj by obliczyć pochodną podanej funkcji, wykorzystuję wzór na pochodną iloczynu dwóch funkcji:
      \displaystyle \left( {f\cdot g} \right)’=f’\cdot g+f\cdot g’

      Jedną z niech jest \displaystyle f={{x}^{3}}, drugą zaś \displaystyle g=cos ({{x}^{2}}-1), która jest funkcją złożoną.

      No to liczymy pochodną:
      \displaystyle \left( {{{x}^{3}}cos ({{x}^{2}}-1)} \right)’=\left( {{{x}^{3}}} \right)’\cdot \left( {cos ({{x}^{2}}-1)} \right)+\left( {{{x}^{3}}} \right)\cdot \left( {cos ({{x}^{2}}-1)} \right)’=3{{x}^{2}}\cdot cos ({{x}^{2}}-1)+{{x}^{3}}\cdot \left( {-sin ({{x}^{2}}-1)} \right)\cdot ({{x}^{2}}-1)’=3{{x}^{2}}\cdot cos ({{x}^{2}}-1)-{{x}^{3}}\cdot sin ({{x}^{2}}-1)\cdot 2x=3{{x}^{2}}\cdot cos ({{x}^{2}}-1)-2{{x}^{4}}\cdot sin ({{x}^{2}}-1)

      Wynik jest jednak odrobinę inny od tego wskazanego w WolframAlpha
      http://www.wolframalpha.com/input/?i=%28x%5E3*cos%28x%5E2-1%29%29%27

      Widać, że wyrażenie w nawiasie – wielomian jest przedstawiony “odwrotnie”, jakby z minusem, co oczywiście można zrobić, czyli \displaystyle cos ({{x}^{2}}-1)=cos (-(1-{{x}^{2}}))lub też \displaystyle sin ({{x}^{2}}-1)=sin (-(1-{{x}^{2}}))
      I w tym miejscu korzystając z własności funkcji trygonometrycznych kąta ujemnego:
      \displaystyle \begin{matrix} cos (-\alpha )=cos (\alpha )sin (-\alpha )=-sin (\alpha )\end{matrix}

      Otrzymuję wynik zgodny z tym wskazanym z kalkulatorze:
      \displaystyle 3{{x}^{2}}\cdot cos ({{x}^{2}}-1)-2{{x}^{4}}\cdot sin ({{x}^{2}}-1)=3{{x}^{2}}\cdot cos (-(-{{x}^{2}}+1))-2{{x}^{4}}\cdot sin (-(-{{x}^{2}}+1))=3{{x}^{2}}\cdot cos (1-{{x}^{2}})-2{{x}^{4}}\cdot (-sin (1-{{x}^{2}}))=3{{x}^{2}}\cdot cos (1-{{x}^{2}})+2{{x}^{4}}\cdot sin (1-{{x}^{2}})

  58. Karol pisze:

    Witam. Dostałem na egzaminie dwa przykłady, skorzystałem z kalkulatora on je oczywiście obliczył ale ja nadal nie wiem skąd wziął się wynik, oto one :
    1) (niestety nie wiem do czego dąży x bo się zamazało ale chyba do nieskończoności) lim(lm(1+4x^2))/x
    2) (też x chyba dąży do nieskończoności) lim(1-e^2x)/tg(x)
    Pozdrawiam Karol

  59. Marlena pisze:

    Dzień dobry.
    Pewnie pisze pod złym postem, forum, czy nie wiem jak to nazwać. Jednakże mam zadanie które nie bardzo wiem, jak rozwiązać. Liczę na Pańską pomoc 🙂

    Zad.: Dowieść,że dla xcR prawdziwa jest nierówność:
    a) 2xarctgx > ln(1+x^2)
    b) |arctgx – arctgy| <= |x-y|

    Dodam jeszcze, iż wiem, że jest to związane z Twierdzeniem Lagrange'a ale nawet z tą wiedzą nic mądrego mi nie wychodzi 🙁

  60. Anna pisze:

    Dzień dobry!

    Muszę policzyć pierwszą i drugą pochodną z y=lnx/√x wygląda niewinnie ale jest niezwykle uciążliwa. Bardzo proszę o pomoc Panie Krystianie

    1. Kamil Kocot pisze:

      y equals fraction numerator ln x over denominator square root of x end fraction

      Należy skorzystać ze wzoru na dzielenie

      open parentheses f over g close parentheses to the power of apostrophe equals fraction numerator f apostrophe g minus f g apostrophe over denominator g squared end fraction

      Dostaniemy

      table attributes columnalign \right center \left columnspacing 0px end attributes row cell y apostrophe end cell equals cell fraction numerator open parentheses ln x close parentheses apostrophe times square root of x minus ln x times open parentheses square root of x close parentheses apostrophe over denominator open parentheses square root of x close parentheses squared end fraction equals fraction numerator \begin display style 1 over x end style times square root of x minus ln x times \begin display style fraction numerator 1 over denominator 2 square root of x end fraction end style over denominator x end fraction end cell row blank equals cell fraction numerator \begin display style fraction numerator square root of x over denominator x end fraction minus fraction numerator ln x over denominator 2 square root of x end fraction end style over denominator x end fraction times fraction numerator 2 square root of x over denominator 2 square root of x end fraction equals fraction numerator \begin display style fraction numerator 2 x over denominator x end fraction minus ln x end style over denominator 2 x square root of x end fraction end cell row blank equals cell fraction numerator \begin display style 2 minus ln x end style over denominator 2 x square root of x end fraction end cell end table

      I druga pochodna

      table attributes columnalign \right center \left columnspacing 0px end attributes row cell y apostrophe apostrophe end cell equals cell open parentheses fraction numerator \begin display style 2 minus ln x end style over denominator 2 x square root of x end fraction close parentheses to the power of apostrophe equals fraction numerator \begin display style open parentheses 2 minus ln x close parentheses apostrophe times 2 x square root of x minus open parentheses 2 minus ln x close parentheses times open parentheses 2 x square root of x close parentheses apostrophe end style over denominator open parentheses 2 x square root of x close parentheses squared end fraction end cell row blank equals cell fraction numerator \begin display style open parentheses negative 1 over x close parentheses times 2 x square root of x minus open parentheses 2 minus ln x close parentheses times open parentheses 2 x to the power of bevelled 3 over 2 end exponent close parentheses apostrophe end style over denominator open parentheses 2 x to the power of \begin display style bevelled 3 over 2 end style end exponent close parentheses squared end fraction end cell row blank equals cell fraction numerator \begin display style open parentheses negative 1 over x close parentheses times 2 x square root of x minus open parentheses 2 minus ln x close parentheses times 2 times 3 over 2 x to the power of bevelled 1 half end exponent end style over denominator 4 x cubed end fraction end cell row blank equals cell fraction numerator \begin display style negative 2 square root of x minus open parentheses 2 minus ln x close parentheses times 3 square root of x end style over denominator 4 x cubed end fraction end cell row blank equals cell fraction numerator \begin display style negative 2 square root of x minus 6 square root of x plus 3 square root of x ln x end style over denominator 4 x cubed end fraction end cell row blank equals cell fraction numerator \begin display style negative 8 square root of x plus 3 square root of x ln x end style over denominator 4 x cubed end fraction end cell row blank equals cell fraction numerator \begin display style square root of x open parentheses 3 minus 8 ln x close parentheses end style over denominator 4 x cubed end fraction end cell row blank equals cell fraction numerator \begin display style 3 minus 8 ln x end style over denominator 4 x squared square root of x end fraction end cell end table

  61. Tomasz W. pisze:

    Witam. Mam problem z obliczeniem pochodnej dla f(x) = arcsin√1-x/1+x. Całe wyrażenie dzielenia jest pod pierwiastkiem.

  62. damian pisze:

    y=e^2x + x^2 + cos(4x^3-6)

    przy e jest do potęgi 2x.

    potrzebuje pomocy

  63. Aleksandra K. pisze:

    A dlaczego pochodna z ctgx+x=-ctg^2x ????????????

  64. pilarczyk123 pisze:

    chcialbym zapytac jako co traktujemy a/t przy funkcji cos t/a

  65. Paulina pisze:

    Mam pytanie
    dlaczego √x(1-2x^2) ma pochodną 1-10x^2/2√x ? Prosze o wytłumaczenie. Z gódy dziękuje 🙂

  66. Kasia pisze:

    Pomoże ktoś mam do obliczenia 2 pochodne : (sinx / sinx-cosx) i pierwiastek z 5 tgx -2ctgx. Z góry dziękuje za odpowiedź 🙂

  67. Karolina pisze:

    Dzień dobry, jak policzyć pochodną (x-1)^3(x-2) krok po kroku i dlaczego wyznacza się 3 przed nawias? Nie rozumiem tego. Byłabym wdzięczna za wytłumaczenie. Pozdrawiam

  68. KASIA pisze:

    pochodna sin(x^x) – krok po kroku, proszę !

  69. Dominik pisze:

    Mam pytanie, ile wynosi pochodna z \sqrt(2x-sinx(cos(x))^3)

  70. Michał pisze:

    Mama pytanie, jak bedzie wygladala pochodna z arcsin(2x-1)? Czy po tym jak “trafi” pod pierwiastek to (2x-1)^2 nalezy rozwinac jak rownanie kwadratowe?

    1. Krystian Karczyński pisze:

      Pójdzie tak:

      {{\left( arcsin \left( 2x-1 \right) \right)}^{\prime }}=\frac{1}{\sqrt{1-{{\left( 2x-1 \right)}^{2}}}}{{\left( 2x-1 \right)}^{\prime }}=\frac{1}{\sqrt{1-\left( 4{{x}^{2}}-4x+1 \right)}}\cdot 2=

      =\frac{2}{\sqrt{1-4{{x}^{2}}+4x-1}}=\frac{2}{\sqrt{-4{{x}^{2}}+4x}}=\frac{2}{\sqrt{4\left( -{{x}^{2}}+x \right)}}=\frac{2}{\sqrt{4}\sqrt{x-{{x}^{2}}}}=

      =\frac{2}{2\sqrt{x-{{x}^{2}}}}=\frac{1}{\sqrt{x-{{x}^{2}}}}

      Polecam: Kurs Pochodnych

  71. Kasia Peczyńska pisze:

    Hej:)
    Mam problem z policzeniem pochodnych II rzędu.
    Przykład wygląda tak:
    f(x,y)= 7- 4x/y – 2x^4y^3

    Byłabym wdzięczna za pomoc:)
    Pozdrawiam.

    1. Krystian Karczyński pisze:

      Hej. To pójdzie tak:

      f\left( x,y \right)=7-\frac{4x}{y}-2{{x}^{4}}{{y}^{3}}

      Pochodne cząstkowe I-go rzędu:

      \frac{\partial f}{\partial x}=\frac{\partial }{\partial x}\left( 7-\frac{4x}{y}-2{{x}^{4}}{{y}^{3}} \right)=\frac{\partial }{\partial x}\left( 7 \right)-\frac{\partial }{\partial x}\left( \frac{4x}{y} \right)-\frac{\partial }{\partial x}\left( 2{{x}^{4}}{{y}^{3}} \right)=0-\frac{4}{y}\frac{\partial }{\partial x}\left( x \right)-2{{y}^{3}}\frac{\partial }{\partial x}\left( {{x}^{4}} \right)=

      =0-\frac{4}{y}-2{{y}^{3}}\cdot 4{{x}^{3}}=-\frac{4}{y}-8{{y}^{3}}{{x}^{3}}

      \frac{\partial f}{\partial y}=\frac{\partial }{\partial y}\left( 7-\frac{4x}{y}-2{{x}^{4}}{{y}^{3}} \right)=\frac{\partial }{\partial y}\left( 7 \right)-\frac{\partial }{\partial y}\left( \frac{4x}{y} \right)-\frac{\partial }{\partial y}\left( 2{{x}^{4}}{{y}^{3}} \right)=0-4x\frac{\partial }{\partial x}\left( \frac{1}{y} \right)-2{{x}^{4}}\frac{\partial }{\partial y}\left( {{y}^{3}} \right)=

      =-4x\left( -\frac{1}{{{y}^{2}}} \right)-2{{x}^{4}}\cdot 3{{y}^{2}}=\frac{4x}{{{y}^{2}}}-6{{x}^{4}}{{y}^{2}}

      Pochodne cząstkowe II-go rzędu:

      \frac{{{\partial }^{2}}f}{\partial {{x}^{2}}}=\frac{\partial }{\partial x}\left( -\frac{4}{y}-8{{y}^{3}}{{x}^{3}} \right)=\frac{\partial }{\partial x}\left( -\frac{4}{y} \right)-\frac{\partial }{\partial x}\left( 8{{y}^{3}}{{x}^{3}} \right)=0-8{{y}^{3}}\frac{\partial }{\partial x}\left( {{x}^{3}} \right)=-8{{y}^{3}}\cdot 3{{x}^{2}}=-24{{x}^{2}}{{y}^{3}}

      \frac{{{\partial }^{2}}f}{\partial y\partial x}=\frac{\partial }{\partial y}\left( -\frac{4}{y}-8{{y}^{3}}{{x}^{3}} \right)=\frac{\partial }{\partial y}\left( -\frac{4}{y} \right)-\frac{\partial }{\partial y}\left( 8{{y}^{3}}{{x}^{3}} \right)=-4\frac{\partial }{\partial y}\left( \frac{1}{y} \right)-8{{x}^{3}}\frac{\partial }{\partial y}\left( {{y}^{3}} \right)=\frac{4}{{{y}^{2}}}-24{{x}^{3}}{{y}^{2}}

      \frac{{{\partial }^{2}}f}{\partial x\partial y}=\frac{\partial }{\partial x}\left( \frac{4x}{{{y}^{2}}}-6{{x}^{4}}{{y}^{2}} \right)=\frac{\partial }{\partial x}\left( \frac{4x}{{{y}^{2}}} \right)-\frac{\partial }{\partial x}\left( 6{{x}^{4}}{{y}^{2}} \right)=\frac{4}{{{y}^{2}}}\frac{\partial }{\partial x}\left( x \right)-6{{y}^{2}}\frac{\partial }{\partial x}\left( {{x}^{4}} \right)=\frac{4}{{{y}^{2}}}-24{{x}^{3}}{{y}^{2}}

      \frac{{{\partial }^{2}}f}{\partial {{y}^{2}}}=\frac{\partial }{\partial y}\left( \frac{4x}{{{y}^{2}}}-6{{x}^{4}}{{y}^{2}} \right)=\frac{\partial }{\partial y}\left( \frac{4x}{{{y}^{2}}} \right)-\frac{\partial }{\partial y}\left( 6{{x}^{4}}{{y}^{2}} \right)=4x\frac{\partial }{\partial y}\left( {{y}^{-2}} \right)-6{{x}^{4}}\frac{\partial }{\partial y}\left( {{y}^{2}} \right)=-\frac{8x}{{{y}^{3}}}-12{{x}^{4}}y

      Polecam także mój Kurs Video: Kurs Funkcje Wielu Zmiennych

  72. Katarzyna pisze:

    Mam takie zadanie i nie umię go rozwiązać prosze o pomoc Z góry dziękuję 🙂
    Znaleźć:
    ∂z/∂y dla danej funkcji:
    z=x^2 √((x+y)/(x-y))

  73. Ania pisze:

    mam pare zadan i nie wiem jak je rozwiazac

  74. Jolanta Lokajczyk pisze:

    Proszę o pomoc w obliczeniu pochodnej z funkcji f(x)=〖log〗_2^5 (x+x^3)/arctgx (tzn f(x)=log stopnia 2 w potędze 5 z ((x+x^3)/arctgx) ). Radzę sobie z takim zadaniem, gdy log nie jest w potędze. W tym przypadku nie mam pewności jak to ma być prawidłowo obliczone.

  75. Klaudia pisze:

    Panie Krystianie zwracam się z ogromną prośbą…:) Otóż chodzi mi o zbadanie funkcji(tzn.zb.wartości,gdzie funkcja rośnie,gdzie maleje) ,ekstrema,punkty stałe, maksima i minima:
    a)f(x)=Ax/(1+x),A>=2
    b)f(x)=2/3x+1/3A,A>=11