
Kalkulator do pochodnych (NIEAKTUALNY)

Krystian Karczyński
Założyciel i szef serwisu eTrapez.
Magister matematyki Politechniki Poznańskiej. Korepetytor matematyki z wieloletnim stażem. Twórca pierwszych Kursów eTrapez, które zdobyły ogromną popularność wśród studentów w całej Polsce.
Mieszka w Szczecinie. Lubi spacery po lesie, plażowanie i kajaki.
Ogłoszenie
Niestety, po ponad 12 latach od udostępnienia przeze mnie darmowego kalkulatora do pochodnych, musiałem go “wyłączyć”.
Kalkulator był prostym “widgetem” strony WolframAlpha. Jakiś czas temu Wolframalpha zmienił swoją politykę odnośnie widgetów. Między innymi: przestały one obliczać “na miejscu”, tylko przerzucają użytkownika na stronę WolframAlpha .
Przepraszam za kłopot wszystkich dotychczasowych użytkowników Kalkulatora Do Pochodnych. Przez długie lata bił on rekordy popularności jeśli chodzi o liczbę odwiedzających i zapytań.
Jednocześnie serdecznie zapraszam do naszej nowej aplikacji:
Aplikacja do nauki liczenia pochodnych – MathKiwi
Jest ona dostępna tylko za 11 zł / miesiąc, a zrezygnować można w dowolnej chwili.
Pozdrawiam i powodzenia
Krystian Karczyński
Szukasz korepetycji z matematyki na poziomie studiów lub szkoły średniej? A może potrzebujesz kursu, który przygotuje Cię do matury?
Jesteśmy ekipą eTrapez. Uczymy matematyki w sposób jasny, prosty i bardzo dokładny - trafimy nawet do najbardziej opornego na wiedzę.
Stworzyliśmy tłumaczone zrozumiałym językiem Kursy video do pobrania na komputer, tablet czy telefon. Włączasz nagranie, oglądasz i słuchasz, jak na korepetycjach. O dowolnej porze dnia i nocy.
Mam problem z pochodą funkcji f(x)= arcsin(sqrt(x-1)) we wzorze na pochodną jest x^2 a w kalkulatorze wynik wychodzi bez kwadratu 🙁 nie wiem co robię źle.
Rozwiązałem ten przykład krok po kroku, czy coś pomogłem?
Dzień dobry mam problem z policzeniem tych pochodnych :Niech y = f(x) = cos 2x, g(x) = e^((1/3)*x)a) oblicz g'(3)b) oblicz (f(x)g(x))’c) oblicz (f(x)/g(x))’
a)
g’\left( x \right) = {\left( {{e^{{\textstyle{1 \over 3}}x}}} \right)^\prime } = {e^{{\textstyle{1 \over 3}}x}} \cdot {\left( {\frac{1}{3}x} \right)^\prime } = \frac{1}{3}{e^{{\textstyle{1 \over 3}}x}}
g’\left( 3 \right) = \frac{1}{3}{e^{{{\frac{1}{3}}} \cdot 3}} = \frac{1}{3}e = \frac{e}{3}
b)
f\left( x \right)g\left( x \right) = \cos 2x \cdot {e^{{\textstyle{1 \over 3}}x}} = {e^{{\textstyle{1 \over 3}}x}}\cos 2x
{\left[ {f\left( x \right)g\left( x \right)} \right]^\prime } = {\left( {{e^{{\textstyle{1 \over 3}}x}}\cos 2x} \right)^\prime } = {\left( {{e^{{\textstyle{1 \over 3}}x}}} \right)^\prime }\cos 2x + {e^{{\textstyle{1 \over 3}}x}}{\left( {\cos 2x} \right)^\prime } =
= {e^{{\textstyle{1 \over 3}}x}}{\left( {\frac{1}{3}x} \right)^\prime }\cos 2x + {e^{{\textstyle{1 \over 3}}x}}\left( { – \sin 2x} \right) \cdot {\left( {2x} \right)^\prime } = \frac{1}{3}{e^{{\textstyle{1 \over 3}}x}}\cos 2x – 2{e^{{\textstyle{1 \over 3}}x}}\sin 2x =
= {e^{{\textstyle{1 \over 3}}x}}\left( {\frac{1}{3}\cos 2x – 2\sin 2x} \right)
spoko opcja czasami korzystamy Pozdro
Dzień dobry, jak wprowadzic pierwiastek w kalkulator aby obejmował całe wyrażenie a nie tylko daną część?
Dzień dobry.Nwm jak policzyć pochodną f(x) =sin(2 do x).Wię piszę tutaj
Dzień dobry, pójdzie tak:
Witam, polecam moją darmową Lekcję do liczenia pochodnej z definicji 🙂
A co przykładu, poleci tak:
W naszym przypadku

.
Mamy więc:
Sprawdzamy prawdziwość tego wyniku korzystając ze wzorów:
Czyli wszystko gra 🙂
Witam,
mam problem z rozwiązaniem takiego zadania:
Oblicz z definicji pochodną f(x)= 1/(5x+6) w punkcie x0. Poprawność sprawdź z wzorów na pochodne.
Z góry dziękuję za pomoc.
Panie Krystianie, nie do końca wiem jak obliczyć pochodną z funkcji (2x^6-16x^3)/(x^3-2)^2. Mógłby Pan mi prosze pomóc? 🙂
Pochodna z

.
Na początku mamy tutaj dzielenie dwóch funkcji, więc zaczynamy od zastosowania wzoru:

No tu wyjdzie ostatecznie:
x^2+e^x/x-lnx czy pomoze ktoś ?
Jeżeli dobrze odczytałem zapis, to pójdzie tak:
WitamMam problem z pochodna x^x jak to obliczyc?
Myślę, że ten filmik będzie baaardzo pomocny i wszystko wyjaśniający (chociaż przykład jest lekko inny) 🙂
W Pani przypadku wyjdzie ostatecznie:
Pójdzie tak:
Cześć!Mam problem z pochodną 6x(x^2+1)^2 mógłbys wytłumaczyc krok po kroku?
Tak, zapraszam:
Witam serdecznie. Mam problem z pochodną f(x)= 3/((1-x^2)(1-2x^3)). Kalkulator pokazuje odpowiedź: 6x(-5x^3+3x+1)/(mianownik^2). A w moich obliczeniach wszystko się zgadza oprócz tego, że mam -6x. Ktoś wie co się stało z tym minusem? Proszę o odpowiedź
W pewnym momencie można wyciagnąć -2x przed nawias:
Witam. Mam problem z policzeniem pochodnej f(x)=ln(x)log_2(x)
Witam, nie rozumiem dlaczego pochodna z funkcji f(x)=e^2x+e^-x wychodzi e^2-e^-x a nie 2e^2x-e^-xBardzo proszę o odp
Witammam policzyć pochodne i nie potrafię sobie z nimi poradzić:

mogę prosić o pomoc
dzień dobry,czy ktoś może wie w jaki sposób krok po kroku obliczyć pochodną poniższej funkcji?

Będę wdzięczna za pomoc 🙂
Dzień dobry,zasanowiła mnie jedna rzecz. Chcąc sprawdzić wynik pochodnej (-8cos(x)sin(x))’ znalałzam Pana kalkulator i inny. wg Pana kalkulatora wynik to (-8cos(2x)), a to wyszło w innym (8(sinx)^2 – 8(cosx)^2) – i ja też otrzymałam taki wynik. Mogę prosić o pomoc?To całe zadanie jaki muszę obliczyć: -8cos(x)sin(x)+(e^(x^(1/2))(1- (1/x^(1/2))) /(4x))”Podzieliłam” je na 2 zgodnie z właściwościami pochodnych – [f(x)+g(x)]’ = f'(x)+g'(x)
“wg Pana kalkulatora wynik to (-8cos(2x)), a to wyszło w innym (8(sinx)^2 – 8(cosx)^2) – i ja też otrzymałam taki wynik.”
Pani Kasiu – oba wyniki są poprawne 🙂 Policzyła Pani wszystko prawidłowo.
Kalkulator zamieszczony na Blogu po prostu dodatkowo dokonał jeszcze jedne przekształcenie, wykorzystując rozpisanie wzoru

ze szkoły średniej (jak pamiętamy, tam były jego 3 wersje)
Rozpisując Pani wynik:
mam problem z pochodną funkcji :

oczywiście polecenie policz pochodne
1.

Stosuję wzór

2.

Stosuję wzory:





oraz 

Stosuję wzory

oraz 

w kalkulatorze wychodzą bzdury gdy liczy się pochodną pierwiastków:np po wpisaniu (x^2)^-2 czyli

(pochodna to oczywiście 1) wychodzi
Tutaj akurat kalkulator dobrze policzył pochodną 🙂
Wpisana formuła “(x^2)^-2” (potęga (-2) ) nie oznacza pierwiastka, tylko inna potęgę, a mianowicie:


– minus w potędze odwraca podstawę 🙂
Aby wprowadzić pierwiastek, trzeba wziąć potęgę ułamkową, czyli powinien Pan wpisać “”(x^2)^(1/2)”
Wtedy pochodna:
Witam Panie Krzysztofie,czy mógłby mi Pan pomóc z obliczeniem pochodnej:

Stosuję wzory dla pochodnej ułamku:
Dzień dobry, chciałem zwrócić uwagę na błąd, gdy w pochodnej funkcji sqrt(3^3 -2) wynikiem jest ((3^x)log(3))/(2(sqrt(3x-2))), gdzie w miejscu log powinno być ln.Pozdrawiam
Witam, w ostatniej lekcji z kursu pochodnych robił Pan przykład x/lnx, Moje pytanie brzmi skąd w wykresie 2 pochodnej wziął się punkt 1. wklejam juz policzoną 2 pochodną
Dzień dobry Panie Krystianie!Czy mógłby mi Pan pomóc w obliczeniu pochodnej z:

* 

?
Wiadomo, że pochodna liczby stałej wynosi zero:
Obliczymy:
Stąd mamy, że

Liczba stała nie zależy od x. Obliczymy ją:
Wtedy funkcja
i jej pochodna
(wg wzoru dla funkcji złożonej:

)
wynosi:
Witam, potrzebuję obliczyć pierwszą pochodną funkcji. Jak to zrobić?i(x) = 3e^2x *lnx
Stosuję wzory:

(gdzie C – stała) oraz 





, a także
Witam,nie wiem czy kalkulator dobrze liczy ale wychodzi że (ln(x))’ = 1/x i to jest dobrze ale wpisując ln(2x) podaje wynik też 1/x czy to jest aby dobrze? Czy nie powinno być 2/x ?Proszę o szybką odpowiedź.
Tutaj wynik jest poprawny, pochodna

Bierze się to z tego, że jest to złożenie dwóch funkcji – nie ma Pan samego “x” w logarytmie tylko coś więcej. Przy liczeniu takich pochodnych, najpierw robimy pochodną tej funkcji “zewnętrznej” i domnażamy do niej pochodną funkcji w środku, tej “wewnętrznej”.
Ogólnie na wzorach to idzie tak:

Przy naszych danych to pójdzie tak:

, gdzie za ten 

biorę funkcję wewnętrzną.
Stąd ostatecznie:

Witam mógłby mi ktoś pomóc obliczyć pochodną funkcji y=

Stosuję wzór:





jak obliczyć pochodna funkcjiy= 4x^1/3 * (5 + 2*4^3^x)/x^2 + 1
Stosuję wzory:
Witam, jak obliczyć pochodną funkcji f(x)= e^(2x+1)/(x-2)
Witam, czy mógłby mi Pan wytłumaczyć jak rozwiązać taką pochodną:f(x)=xsinxlnx ?z góry dziękuje i pozdrawiam 🙂
Znany jest wzór dla pochodnej iloczynu:
Spróbujemy otrzymać wzór dla iloczynu trzech czynników:
Wtedy:
(2x-1)^4=8(2x-1)^3 dlaczego tak????
Jak to obliczyć ? f(x)=

f(x)=x^2*(x-2)^2Wytłumaczysz mi jak to policzyłeś, trochę inaczej mam rozpisane z zajęć i się pogubiłam…? Z góry dziękuję 🙂
Stosuję wzór:
Można było inaczej:
Wtedy:
f(x)=ln

czy moge zapisac w postaci

???
1) f(x)=

2) f(x)=

3) f(x)=ln(

)
odp do f(x)=

to 

???
Stosuję wzór na pochodne funkcji złożonej:
f(x)=

???
Tutaj jest do policzenia pochodna funkcji złożonej, czyli argumentem nie jest sam „x” tylko coś więcej, nie ma po prostu


tylko 


. 



.
Postępujemy jak zawsze w takich przypadkach, czyli: pochodna tego co „na zewnątrz” pomnożyć razy pochodna funkcji wewnętrznej (coś więcej niż sam „x”), czyli jakby
Stąd:

Tak, “pierwiastek” można wpisać na dwa sposoby
1) wpisując: \sqrt(…) , np \sqrt(2x) oznacza

2) wpisując potęgę ułamkową , tzn. (…)^(1/2) , np (x)^(1/2) oznacza

jak rozwiazac:1) f(x)=

2) f(x)=

z góry bardzo dziękuje!
1.

Skorzystam ze wzoru:
czy mógłby ktoś mi pomóc z rozwiązaniem pochodnej: (x^2)/(2-x) ?
Kalkulator wylicza to jako: [-(x-4)x]/[(x-2)^2]
Ja wyliczam już czwarty raz i za każdym wychodzi mi taki sam wynik [(4-x)x]/[(2-x)^2], niestety inny niż kalkulatora 🙁
proszę o pomoc!
Oba wyniki są poprawne i oba są identyczne 🙂
Po prostu ten z kalkulatora wyliczony “wyciągnął” jeszcze minusy z każdego z wyrażeń.
Przekształcę więc je tak, że na górze wciągnę go z powrotem, a na dole jakby go wyciągnę jeszcze raz (bo podniesiony do kwadratu się zredukował). Proszę popatrzeć:
\displaystyle \frac{{-(x-4)x}}{{{{{(x-2)}}^{2}}}}=\frac{{(-x+4)x}}{{{{{\left[ {-(-x+2)} \right]}}^{2}}}}=\frac{{(4-x)x}}{{{{{(-1)}}^{2}}{{{(2-x)}}^{2}}}}=\frac{{(4-x)x}}{{{{{(2-x)}}^{2}}}}
No i wyszedł Pani wynik 🙂
jeju, rzeczywiście, ale głupi błąd! 😛
Bardzo dziękuje, juz rozumiem 😉
Witam, nie rozumiem dlaczego pochodna ln2x^2 to y'(x) = (2 log(2 x))/x
Bardzo pomocny kalkulator pochodnych funkcji, przydatny szczególnie do sprawdzania wyników.
Witam 🙂 Dlaczego pochodna z e^(2^x)=2^x*e^(2^x)*log2?
Tutaj jest do policzenia pochodna funkcji złozonej, czyli argumentem nie jest sam „x” tylko coś więcej, nie ma po prostu


tylko 


. 



Postępujemy jak zawsze w takich przypadkach, czyli: pochodna tego co „na zewnątrz” pomnożyć razy pochodna funkcji wewnętrznej (coś więcej niż sam „x”), czyli jakby
Stąd:

, gdyż wprost z wzorku 

.
Witam. Mam problem z zadaniem: f(x1,x2)=1/2ln(5×1^2-2×2). Jak mogę narysować krzywe w punktach 0, 1 i 2? Wytyczenie pochodnej i całki również by się przydało…
Dzień dobry, bardzo prosiłabym o pomóc z przykładem [((arctgX^2)^3)/((e^3)*x+3^x)]^(arctg(x^4-ln(2x^8+1) Czyli iloraz w tym kwadratowym nawiasie podnosimy do potęgi i z tego wszystkiego policzyć pochodną…wychodzą mi kosmiczne rozwiazania…Z góry dziękuję.
Panie Krystianie,
może jest mi Pan w stanie wytłumaczyć dlaczego pochodna z -arctg|x| ma pochodną -x/(|x^3|+|x|), a nie po prostu -1/(1+x^2)?
Byłabym bardzo wdzięczna za pomoc 🙂
Pani Kasiu, gdyby do policzenia byłaby pochodna po prostu z \displaystyle -arctgxto byłaby równa rzeczywiście \displaystyle -\frac{1}{{1+{{x}^{2}}}}
Jednak tutaj do policzenia jest pochodna \displaystyle -arctg\left| x \right|, czyli argumentem nie jest sam “x” tylko coś więcej – moduł z “x”.
Postępujemy jak zawsze w takich przypadkach, czyli: pochodna tego co “na zewnątrz” pomnożyć razy pochodna funkcji wewnętrznej (coś więcej niż sam “x”), czyli jakby \displaystyle \left( {-arctg\Delta } \right)’\cdot \Delta ‘
Pytanie, ile wynosi pochodna modułu z x ?
Rozpisując moduł, wiem, że:


Czyli odpowiednio pochodna byłby równa 1 lub -1.. Jednak potrzebuję pochodnej w ogólnym przypadku (nie na przedziałach).
Dlatego uznaje się, że pochodna modułu to (warto zapamiętać ten wzór):
\displaystyle \left( {\left| x \right|} \right)’=\frac{x}{{\left| x \right|}}
Można sobie rozpisać na odpowiednich przedziałach i faktycznie wyjdzie 1 lub -1 😉
Mając wszystko, liczę:
\displaystyle \left( {-arctg\left| x \right|} \right)’=-\frac{1}{{1+{{{\left| x \right|}}^{2}}}}\cdot \left( {\left| x \right|} \right)’=-\frac{1}{{1+{{{\left| x \right|}}^{2}}}}\cdot \frac{x}{{\left| x \right|}}=-\frac{x}{{\left| x \right|+{{{\left| x \right|}}^{3}}}}
Mam wielką prośbę. Nie moge poradzić sobie z monotonicznością tej funkcji x^3/(x^2+-x-2) będę ogromnie wdzięczny za odpowiedz. Pozdrawiam 🙂
x^3/(x^2-x-2) wyzej jest mały bląd
Dana jest funkcja

.
Zaczynamy od wyznaczenia dziedziny funkcji.
Zatem
Przechodzimy do wyznaczania monotoniczności funkcji

. W tym celu obliczymy jej pochodną i sprawdzimy, kiedy jest dodatnia, a kiedy ujemna.
Zbadamy teraz, kiedy pochodna przyjmuje wartości większe lub równe




, a kiedy mniejsze lub równe 




.
Pochodna przyjmuje wartości większe lub równe




dla 


oraz dla 


. 




dla 

.
Pochodna przyjmuje wartości mniejsze lub równe
Należy pamiętać o założeniach dziedziny:


.
Zatem podana funkcja jest rosnąca w przedziałach


, 


oraz malejąca w przedziałach 

, 

, 

.
Witam! Mam taką funkcję :
f(x) = (2x-x^2)^(2/3). Jak obliczyć pochodną takiej funkcji?
By obliczyć pochodną z funkcji \displaystyle {{(2x-{{x}^{2}})}^{{\frac{2}{3}}}} stosuję wzór
\displaystyle \left( {{{x}^{n}}} \right)’=n\cdot {{x}^{{n-1}}}, gdzie jak zauważam, mam coś więcej niż sam “x”, mam dodatkową funkcję (zwaną funkcją wewnętrzną). W taki przypadku obliczoną pochodną przemnażamy przez pochodną funkcji wewnętrznej, czyli mam jakby:
\displaystyle \left( {{{\Delta }^{n}}} \right)’=n\cdot {{\Delta }^{{n-1}}}\cdot \Delta ‘
Mam więc:
\displaystyle \left( {{{{(2x-{{x}^{2}})}}^{{\frac{2}{3}}}}} \right)’=\frac{2}{3}{{(2x-{{x}^{2}})}^{{\frac{2}{3}-1}}}\cdot (2x-{{x}^{2}})’=\frac{2}{3}{{(2x-{{x}^{2}})}^{{-\frac{1}{3}}}}\cdot (2-2x)=\frac{{2\cdot (2-2x)}}{{3\sqrt[3]{{2x-{{x}^{2}}}}}}[/latex]
Witam wszystkich. I proszę o pomoc.
Mam problem z taką pochodną
f(x)=[1-sin(2x)]/[2x^4+7x^2-3] Zatrzymuje się w pewnym momencie i nie wiem co dalej. Kalkulator do pochodnych stworzonego przez Pana Krystiana błędnie odczytuje ostatnia część 7x^2-3 zamiast zrobić wszystko w potędze obejmuje liczbę trzy od reszty za potęga. Proszę o pomoc
To nie chodzi Panu o pochodną funkcji \displaystyle \frac{{1-sin(2x)}}{{2{{x}^{4}}+7{{x}^{2}}-3}}?
A może \displaystyle \frac{{1-sin(2x)}}{{2{{x}^{4}}+{{7}^{{{{x}^{2}}-3}}}}}, czy jeszcze inaczej? Proszę może gdzieś nawias () wstawić dodatkowo, to co ma być ujęte w potędze, bo nie do końca rozumiem o co chodzi z
“część 7x^2-3 zamiast zrobić wszystko w potędze obejmuje liczbę trzy od reszty za potęga”.
Pozdrawiam
Witam, mam problem z pochodną: e^(3x+2)*((x^6)+4). Nie mam pojęcia jak to rozwiązać, bardzo proszę o pomoc…
Wykorzystuję tutaj wzór na iloczyn dwóch funkcji
\displaystyle \left( {f\cdot g} \right)’=f’\cdot g+f\cdot g’
Muszę również pamiętać o tym, że licząc pochodną funkcji złożonej, muszę domnożyć jeszcze razy pochodna funkcji wewnętrznej, tego “coś więcej niż sam x” . to znaczy
\displaystyle \left( {{{e}^{\Delta }}} \right)’={{e}^{\Delta }}\cdot \Delta ‘
No to rozwiązując przykład:
\displaystyle \begin{matrix}\left( {{{e}^{{3x+2}}}\cdot ({{x}^{6}}+4)} \right)’=\left( {{{e}^{{3x+2}}}} \right)’\cdot ({{x}^{6}}+4)+{{e}^{{3x+2}}}\cdot ({{x}^{6}}+4)’= \\ {{e}^{{3x+2}}}\cdot (3x+2)’\cdot ({{x}^{6}}+4)+{{e}^{{3x+2}}}\cdot (6{{x}^{5}}+0)={{e}^{{3x+2}}}\cdot 3\cdot ({{x}^{6}}+4)+{{e}^{{3x+2}}}\cdot 6{{x}^{5}}= \\ 3{{e}^{{3x+2}}}\cdot \left( {{{x}^{6}}+4+2{{x}^{5}}} \right)=3{{e}^{{3x+2}}}\cdot \left( {{{x}^{6}}+2{{x}^{5}}+4} \right)\end{matrix}
Pochodna z: cos^2\pierwiastek z x +sin^2\pierwiastek z x.
Czyli chodzi o pochodną funkcji \displaystyle {{cos }^{2}}\sqrt{x}+{{sin }^{2}}\sqrt{x}?
No to liczę:
\displaystyle \begin{matrix}\left( {{{{cos }}^{2}}\sqrt{x}+{{{sin }}^{2}}\sqrt{x}} \right)’=2cos \sqrt{x}\cdot \left( {cos \sqrt{x}} \right)’+2sin \sqrt{x}\cdot \left( {sin \sqrt{x}} \right)’= \\ 2cos \sqrt{x}\cdot (-sin \sqrt{x})\cdot \left( {\sqrt{x}} \right)’+2sin \sqrt{x}\cdot cos \sqrt{x}\cdot \left( {\sqrt{x}} \right)’= \\-2sin \sqrt{x}cos \sqrt{x}\cdot \frac{1}{{2\sqrt{x}}}+2sin \sqrt{x}\cdot cos \sqrt{x}\cdot \frac{1}{{2\sqrt{x}}}=0\end{matrix}
Dzień dobry panie Krystianie, czy mogłabym liczyć na pomoc w policzeniu pochodnej e^-x^2
Z góry dziękuję i pozdrawiam
Pochodna funkcji \displaystyle y={{e}^{-}}^{{{{x}^{2}}}}
Jest to funkcja złożona, licząc jej pochodną, liczę pochodną funkcji “zewnętrznej”, czyli e^(coś) i muszę domnożyć jeszcze ją razy pochodna funkcji wewnętrznej, tego „coś więcej niż sam x” . to znaczy
\displaystyle \left( {{{e}^{\Delta }}} \right)’={{e}^{\Delta }}\cdot \Delta ‘
Mam:
\displaystyle \left( {{{e}^{-}}^{{{{x}^{2}}}}} \right)’={{e}^{-}}^{{{{x}^{2}}}}\cdot \left( {-{{x}^{2}}} \right)’={{e}^{-}}^{{{{x}^{2}}}}\cdot \left( {-2x} \right)=-2x{{e}^{-}}^{{{{x}^{2}}}}
Witam a jak to rozwiązać ? :/ (x+1)(x+4)
f(x)=(x+1)(x+4)
Pochodną tego można policzyć tak na prawdę na dwa sposoby:
I SPOSÓB – z pochodnej iloczynu \displaystyle \left( {f\cdot g} \right)’=f’\cdot g+f\cdot g’
\displaystyle \begin{matrix}\left( {\text{(x+1)(x+4)}} \right)\text{ }!!’!!\text{ =(x+1) }!!’!!\text{ }\cdot \text{(x+4)}+\text{(x+1)}\cdot \text{(x+4) }!!’!!\text{ =(1+0)}\cdot \text{(x+4)}+\text{(x+1)}\cdot \text{(1+0)=}\text{x+4+x+1=2x+5}\end{matrix}
II SPOSÓB – przemnożyć przez siebie te dwa nawiasy (bez problemu mogę, gdyż w jednym jak i w drugim jest wielomian) i potem policzyć pochodną otrzymanego wielomianu korzystając z wzoru \displaystyle \left( {{{x}^{n}}} \right)’=n\cdot {{x}^{{n-1}}}
\displaystyle \text{(x+1)(x+4)}={{x}^{2}}+4x+x+4={{x}^{2}}+5x+4
\displaystyle \left( {{{x}^{2}}+5x+4} \right)’=\left( {{{x}^{2}}} \right)’+\left( {5x} \right)’+\left( 4 \right)’=2x+5\cdot 1+0=2x+5
Witam Panie Krystianie. Czy w wyznaczaniu pochodnych takie cos jak: e^pi , traktujemy jako liczbę czyli wynik to zero czy w inny sposób?
Dziękuje za odpowiedz
Pozdrawiam
Tak dokładnie, traktujemy to wyrażenie jako liczbę (nie ma Pani tutaj żadnej zmiennej „x”, tylko same stałe), więc pochodna tego to zero 🙂
Czy ktoś by mógł mi pomóc w rozwiązaniu tych pochodnych?
y=e^(1/cosx)
y=a/2(e^(x/a)+e^(-(x/a)))
y=arcsin(e^4x )
y=e^√(7x^2 )
y=log_7cos√(1+x)
Przykład pierwszy: \displaystyle y={{e}^{{\frac{1}{{cos x}}}}}
Jest to funkcja złożona, liczę pochodną funkcji „zewnętrznej”, czyli e^(coś) i muszę domnożyć jeszcze ją razy pochodna funkcji wewnętrznej, tego „coś więcej niż sam x” . To znaczy
\displaystyle \left( {{{e}^{\Delta }}} \right)’={{e}^{\Delta }}\cdot \Delta ‘
Mam:
\displaystyle \left( {{{e}^{{\frac{1}{{cos x}}}}}} \right)’={{e}^{{\frac{1}{{cos x}}}}}\cdot \left( {\frac{1}{{cos x}}} \right)’
Pochodną \displaystyle \left( {\frac{1}{{cos x}}} \right)’można policzyć np z wzoru na iloraz dwóch funkcji
\displaystyle \left( {\frac{f}{g}} \right)’=\frac{{f’\cdot g-f\cdot g’}}{{{{g}^{2}}}}
{e^{\frac{1}{{\cos x}}}}\frac{{1′ \cdot \cos x – 1 \cdot {{\left( {\cos x} \right)}^\prime }}}{{{{\cos }^2}x}} = {e^{\frac{1}{{\cos x}}}}\frac{{ – \left( { – \sin x} \right)}}{{{{\cos }^2}x}} = \frac{{{e^{\frac{1}{{\cos x}}}}\sin x}}{{{{\cos }^2}x}}
Przykład drugi: \displaystyle y=\frac{a}{2}({{e}^{{^{{\frac{x}{a}}}}}}+{{e}^{{-\frac{x}{a}}}})
Jak rozumiem, liczbę “a” traktuję jako pewną stałą?
No to liczę pochodną, stosując wzór: \displaystyle \left( {{{e}^{\Delta }}} \right)’={{e}^{\Delta }}\cdot \Delta ‘
\displaystyle y’=\left( {\frac{a}{2}({{e}^{{^{{\frac{x}{a}}}}}}+{{e}^{{-\frac{x}{a}}}})} \right)’=\frac{a}{2}\left( {{{e}^{{^{{\frac{x}{a}}}}}}+{{e}^{{-\frac{x}{a}}}}} \right)’=\frac{a}{2}\left[ {\left( {{{e}^{{^{{\frac{x}{a}}}}}}} \right)’+\left( {{{e}^{{-\frac{x}{a}}}}} \right)’} \right]=
\displaystyle \frac{a}{2}\left[ {{{e}^{{^{{\frac{x}{a}}}}}}\left( {\frac{x}{a}} \right)’+{{e}^{{^{{-\frac{x}{a}}}}}}\left( {-\frac{x}{a}} \right)’} \right]=\frac{a}{2}\left[ {{{e}^{{^{{\frac{x}{a}}}}}}\cdot \frac{1}{a}\cdot 1+{{e}^{{^{{-\frac{x}{a}}}}}}\cdot \left( {-\frac{1}{a}} \right)\cdot 1} \right]=
\displaystyle \frac{a}{2}\cdot \frac{1}{a}\left( {{{e}^{{^{{\frac{x}{a}}}}}}-{{e}^{{^{{-\frac{x}{a}}}}}}} \right)=\frac{1}{2}\left( {{{e}^{{^{{\frac{x}{a}}}}}}-{{e}^{{^{{-\frac{x}{a}}}}}}} \right)
Można ewentualnie trochę przekształcić wynik i otrzymać:
\displaystyle \frac{1}{2}\left( {{{e}^{{^{{\frac{x}{a}}}}}}-{{e}^{{^{{-\frac{x}{a}}}}}}} \right)=\frac{1}{2}\left( {{{e}^{{^{{\frac{{2x}}{a}-\frac{x}{a}}}}}}-{{e}^{{^{{-\frac{x}{a}}}}}}} \right)=\frac{1}{2}{{e}^{{^{{-\frac{x}{a}}}}}}\left( {{{e}^{{^{{\frac{{2x}}{a}}}}}}-1} \right)