Polynomgleichungen vierten Grades in komplexen Zahlen

Bild von Krystian Karczyński

Krystian Karczyński

Beim Lösen von Aufgaben mit komplexen Polynomgleichungen verwenden wir im Allgemeinen dieselben Methoden wie beim Lösen von reellen Polynomgleichungen in der Oberstufe.

Viertgradige komplexe Gleichungen, die auf zweiten Grad reduzierbar sind

Das gilt auch für viertgradige komplexe Gleichungen, die auf zweitgradige Gleichungen reduziert werden können, also solche, bei denen wir eine Variable zur vierten Potenz, zur zweiten Potenz und einen konstanten Term haben, zum Beispiel:

oder:

Wir reduzieren diese Art von komplexen Gleichungen auf komplexe Gleichungen zweiten Grades durch das Einsetzen von , wobei natürlich die komplexe Variable ist.

Aufgabe

Wir setzen (natürlich ) ein, so erhalten wir:

Und so lösen wir diese Gleichung auf die übliche Weise mit der Diskriminante (natürlich existieren Wurzeln negativer Zahlen in den komplexen Zahlen). Wir erhalten zwei komplexe Lösungen:

Da wir ersetzt haben: , haben wir:

oder:

Das heißt:

oder:

Nach der Berechnung der Wurzeln (natürlich werden es vier komplexe Wurzeln sein), werden wir vier Lösungen haben:

P.S. Ich zeige diese und andere Methoden in Lektion 6 meines Kurses zu komplexen Zahlen, schaut vorbei!

Leave a Reply

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

Ihr Kommentar wird zusammen mit der obigen Signatur öffentlich auf unserer Seite verfügbar sein. Sie können Ihren Kommentar jederzeit ändern oder löschen. Der Verantwortliche für die persönlichen Daten, die in diesem Formular angegeben sind, ist eTrapez Usługi Edukacyjne E-Learning Krystian Karczyński. Die Regeln für die Datenverarbeitung und Ihre damit verbundenen Rechte sind in der Datenschutzrichtlinie beschrieben.


Kategorie

Wirtualny nauczyciel AI działający w przeglądarce internetowej.