Currently Empty: zł0.00

تحليل المعادلة التربيعية إلى عوامل
في التكاملات غير محددة الجذرية يحدث (غالباً) الحاجة إلى تحليل المعادلة التربيعية إلى عوامل: . نفعل ذلك بالطبع من خلال الصيغة:
, والتي تعمل عندما
.
التكاملات الجذرية ودلتا تساوي 0
لكن كيف يبدو الثنائي، عندما تكون دلتا 0؟ مثلاً كيف سيبدو: في صورة عوامل؟
هل هكذا: ؟
بالطبع لا… من المدرسة الثانوية نتذكر أن إذا فإننا في الواقع نجد جذرًا واحدًا، ولكنه جذر مزدوج. لذلك في مثالنا يمكننا القول:
، أي أن المعادلة التربيعية تُفكك إلى عوامل بالشكل التالي:

وهذا له عواقب كبيرة في التكاملات غير محددة الجذرية عند فكها إلى كسور بسيطة.
مثال
لنأخذ مثالاً:

نقوم بفك الكسر بشكل منفصل بدون التكامل، مما يعني:

نقوم بإخراج x من المقام:

نحسب الدلتا من المعادلة التربيعية في الأسفل، نحصل على 0، والجذر هو -1. وبالتالي، بفكها إلى عوامل نحصل على:

ولفكها إلى كسور بسيطة:
