دلتا تساوي صفر في تكاملات غير محددة جذرية

تحليل المعادلة التربيعية إلى عوامل

في التكاملات غير محددة الجذرية يحدث (غالباً) الحاجة إلى تحليل المعادلة التربيعية إلى عوامل: . نفعل ذلك بالطبع من خلال الصيغة: , والتي تعمل عندما increment greater than 0.

التكاملات الجذرية ودلتا تساوي 0


لكن كيف يبدو الثنائي، عندما تكون دلتا 0؟ مثلاً كيف سيبدو: في صورة عوامل؟

هل هكذا:  ؟

بالطبع لا… من المدرسة الثانوية نتذكر أن إذا فإننا في الواقع نجد جذرًا واحدًا، ولكنه جذر مزدوج. لذلك في مثالنا يمكننا القول: ، أي أن المعادلة التربيعية تُفكك إلى عوامل بالشكل التالي:

وهذا له عواقب كبيرة في التكاملات غير محددة الجذرية عند فكها إلى كسور بسيطة.

مثال

لنأخذ مثالاً:

نقوم بفك الكسر بشكل منفصل بدون التكامل، مما يعني:

نقوم بإخراج x من المقام:

نحسب الدلتا من المعادلة التربيعية في الأسفل، نحصل على 0، والجذر هو -1. وبالتالي، بفكها إلى عوامل نحصل على:

ولفكها إلى كسور بسيطة:

Krystian Karczyński

Założyciel i szef serwisu eTrapez.

Magister matematyki Politechniki Poznańskiej. Korepetytor matematyki z wieloletnim stażem. Twórca pierwszych Kursów eTrapez, które zdobyły ogromną popularność wśród studentów w całej Polsce.

Mieszka w Szczecinie. Lubi spacery po lesie, plażowanie i kajaki.

Leave a Reply

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *

سيكون تعليقك متاحًا للعامة على موقعنا مع التوقيع أعلاه. يمكنك تغيير تعليقك أو حذفه في أي وقت. مسؤول البيانات الشخصية المقدمة في هذا النموذج هو eTrapez Usługi Edukacyjne E-Learning Krystian Karczyński. يتم وصف قواعد معالجة البيانات وحقوقك المتعلقة بها في سياسة الخصوصية.