学习
高中
Najpopularniejsze Kursy we październiku
Paczka Wszystkich Kursów eTrapez (w cenie 8,59 zł / Kurs)
查看免费课程
作为一个趣闻,我将计算函数的极限:(x^x^x - cosx)。 比计算本身更有趣的是可以从中得出的两个教训。但教训在最后(有人见过开头就有教训的故事吗)?
当我们需要计算一个极限,并且其中包含减法和根号(显然无法更简单地计算),例如:"某物 - 某物的根号","某物的根号 - 某物"或"某物的根号 - 某物的根号"时,我们使用一种我称之为“乘以共轭”的技巧。 我们只是将该表达式乘以其带加号的对应项,或者更准确地说,乘以一个分数,其中该对应项在分子和分母中。 如果根号是三次的怎么办?
在序列的极限中,有时表达式包含连续自然数的平方和或立方和。那么怎么办呢? 答案很简单: 连续自然数的平方和和立方和的公式如下...
如我们所知(即使只是从我的极限课程中),函数在点 x0 处是连续的,当函数在该点的左极限等于右极限等于该点的函数值时。 如果这些等式中的任何一个不成立,函数 𝑓(x) 在点 𝑥0 处不连续,这个点称为不连续点。在这种命名中,我们可以进一步区分不连续点的类型。看看怎么做。
这篇文章是对问题的回应: "我不明白为什么你简化了“n”?我的意思是n/n是不确定符号(无穷除以无穷)帮帮我,因为我已经迷失了。" 理解真正的不确定符号是什么确实会带来很多麻烦。这也引发了许多关于可以对它们做什么和不可以做什么的问题。
在处理函数和数列的极限时,我们经常遇到各种数学奇怪现象,如: 0/0 或 1/0。 问题是 - 它们是什么意思呢?我经常听到一些完全错误的观点,比如:“在更高层次的数学中,可以除以0”。
数列的极限有时使用等差数列或等比数列的求和公式。如果这些数列以“混合”的方式给出,那就更糟糕了,就像这样。
计算更复杂的函数极限通常需要代换。这是一个例子。 了解使用代换计算函数极限的详细方法,以及如何在函数极限分析中有效应用它们。了解为什么某些极限不存在以及如何逐步证明它们。
了解详细的数学证明,证明当 x 趋向于无穷大时,sin(x) 函数不达到极限。文章讨论了问题的直观和正式方法,并举例说明了周期函数的性质。
我们使用cookies来定制其内容,如果您返回; 使用分析工具 (Google Analytics, Crazyegg); 营销工具 (Google Ads, Facebook Ads); 数学小工具 (Wolfram|Alpha) 以及嵌入外部网站的内容 (YouTube, Vimeo). Cookies的有效期最长为24个月,除非您提前清除它们。括号中指示的第三方有权访问cookies。 点击“接受所有”,您同意使用所有cookies。您也可以通过修改设置来自定义您的同意。 阅读更多