Pochodne funkcji i zadania optymalizacyjne [REMASTERED]

Picture of Krystian Karczyński

Krystian Karczyński

Zadania optymalizacyjne

Zadania optymalizacyjne to takie zadania, w których trzeba znaleźć takie wartości parametrów, dla których wartość od nich zależna jest maksymalna (albo minimalna).

Do takich zadań świetnie nadają się pochodne funkcji.

Przykład na zadanie optymalizacyjne z wykorzystaniem pochodnych funkcji

Chcemy wykonać ogrodzenie na wybieg dla naszego pieska Azorka. Mamy 40 metrów siatki na płot, chcemy, żeby wybieg miał kształt prostokąta i jednym bokiem przylegał do stodoły.

Jakie powinny być wymiary wybiegu, żeby Azor miał jak najwięcej miejsca (powierzchni)? I gdzie w tym miejsce na pochodne funkcji?

Jeżeli ogrodzimy teren dla Azora w ten sposób:

Wybieg dla Azorka 36 na 2 metry

…mamy 40 metrów siatki na płot wykorzystane, ale Azorek ma tylko (pole wybiegu – pole prostokąta):

do biegania, szczekania i kopania rowów.

Jeżeli ogrodzimy inaczej:

Wybieg dla Azorka 20 na 10 metrów

Druta wykorzystaliśmy tyle samo, ale Azorek jest bardziej radosny, bo ma aż (pole wybiegu  = pole prostokąta):

do dyspozycji (czyli prawie 3 razy więcej, niż za pierwszym ułożeniem).

Pochodne funkcji już czekają na nas za zakrętem, bo jest to typowe zadanie optymalizacyjne.

Jak należało by ustalić wymiary wybiegu, aby zmaksymalizować jego powierzchnię?

Jeśli oznaczymy boki prostokąta zmiennymi:

Wybieg dla Azorka x na y metrów

Jasne jest, że spełnione musi być równanie: .

Dążymy do tego, żeby pole prostokąta było maksymalne, więc: .

Z pierwszego równania wyznaczamy , podstawiamy do wyrażenia, które chcemy zmaksymalizować i mamy: , a po przemnożeniu: .

Jest to funkcja kwadratowa i aby wyznaczyć jej maksimum możemy użyć pochodnej: .

https://www.wolframcloud.com/obj/b77c55ee-896d-4d29-b099-1336da26aeb1

Aby obliczyć ekstremum lokalne funkcji wyliczoną pochodną przyrównujemy do zera:

obliczamy :

… i mamy wartość , dla której wybieg ma maksymalny rozmiar. Azorek najbardziej więc będzie szczęśliwy z wybiegu o wymiarach 10 metrów na 20 metrów na 10 metrów (tak jak na drugim rysunku).

Zadanie oczywiście można było rozwiązać obliczając wierzchołek funkcji kwadratowej, ale czy nie prościej było jednak pochodnymi? 🙂

konometria jest dosyć młodą dziedziną wypływającą z ekonomii i matematyki. W praktyce, dzięki modelom ekonometrycznym, możesz „zmierzyć gospodarkę”.Polega to konkretnie na zmierzeniu, jak zachowuje się jedna zmienna w zależności od innych. I na podstawie analizy tego, co było, możesz określać, co będzie się działo w przyszłości.

Wykorzystasz do tego przeróżne obliczenia, testy, schematy. Jedne będą bardzo proste, inne trudniejsze. Jednak najczęściej będzie się liczyło nie to, jak dojdziesz do wyniku, ale jak go zinterpretujesz, odczytasz i jakie wnioski wyciągniesz.

Poniższe Wykłady dotykają najważniejszych pojęć teoretycznych. Jestem przekonana, że pomogę Ci odkrywaniu tego, czym jest ekonometria. I przy okazji uda Ci się zaliczyć ten przedmiot na studiach.

4 Komentarzy

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *

Twój komentarz będzie dostępny publicznie na naszej stronie razem z powyższym podpisem. Komentarz możesz zmienić, lub usunąć w każdej chwili. Administratorem danych osobowych podanych w tym formularzu jest eTrapez Usługi Edukacyjne E-Learning Krystian Karczyński. Zasady przetwarzania danych oraz Twoje uprawnienia z tym związane opisane są w Polityce Prywatności.


Kategorie

Wirtualny nauczyciel AI działający w przeglądarce internetowej.