blog

Kilka Rzeczy, Których Powinieneś Się Dobrze Nauczyć w Średniej, Ale Nikt Ci Tego Nie Powiedział – część 5 Obustronne mnożenie lub dzielenie nierówności

Krystian Karczyński

Założyciel i szef serwisu eTrapez.

Magister matematyki Politechniki Poznańskiej. Korepetytor matematyki z wieloletnim stażem. Twórca Kursów eTrapez, które zdobyły ogromną popularność wśród studentów w całej Polsce.

Mieszka koło Szczecina. Lubi spacery po lesie, plażowanie i piłkę nożną.


W tym poście będę kontynuował tematykę zagadnień ze szkoły średniej, na które – być może – nie miałeś położonego zbyt wielkiego nacisku, a które bardzo ułatwią Ci życie na studia.

To już część 5 – jeśli wskoczyłeś tutaj dopiero teraz możesz zerknąć na 4 poprzednie posty 🙂

Tutaj zajmę się obustronnym mnożeniem i dzieleniem nierówności.

Dzielenie nierówności? A to już chyba wiem, o co chodzi…

No tak. Wszyscy już wiemy (chociaż czasami zapominamy) o zmianie znaku nierówności przy mnożeniu/dzieleniu jej przez liczbę ujemną.

Na przykład:

negative 2 x greater than 4 /:(-2)

x less than negative 2 (zmienił się znak nierówności, bo podzieliłem obie strony przez liczbę ujemną)

albo:

negative x less or equal than negative 1 /times open parentheses negative 1 close parentheses

x greater or equal than 1 (znak nierówności się zmienił po pomnożeniu obu stron przez liczbę ujemną)

 

Co jednak z mnożeniem i dzieleniem nie przez LICZBĘ, tylko przez ZMIENNĄ, na przykład:

{x-1}/x<3 /times x

Możemy zrobić takie mnożenie i wyjść na:

x-1<3x

…?

Prawidłowa odpowiedź to: NIE, NIE MOŻEMY.

Pamiętamy zasadę: “Jeśli mnożymy przez dodatnią nie zmieniamy znaku, jeśli mnożymy przez ujemną zmieniamy”. Mnożąc przez zmienną x NIE WIEMY, czy mnożymy przez liczbę dodatnią, czy ujemną. Zmienna x może być równa -100, a może być równa także 15. To, że nie ma przed nią znaku minus niczego nie zmienia (może być i tak ujemna).

Jeśli tego nie wiemy, nie możemy przechodzić na…

x-1<3x

…bo na taką nierówność moglibyśmy wyjść tylko wtedy, kiedy mnożylibyśmy przez liczbę dodatnią (nie zmieniając znaku), a tego NIE WIEMY.

Analogiczna zasada obowiązuje w dzieleniu, nie możemy więc wykonać sobie czegoś takiego:

x open parentheses x minus 1 close parentheses greater than 0/:x

x minus 1 greater than 0

…bo, jeszcze raz powtórzmy: nie wiemy, czy x jest liczbą dodatnią, czy ujemną.

Podsumowując więc

Nie dzielimy obustronnie nierówności przez zmienne.

I jeszcze….

 

Ciekawostka

Jeżeli – skądinąd – mielibyśmy informację, że zmienna (albo całe wyrażenie) przez które obustronnie chcemy pomnożyć/podzielić JEST zawsze dodatnie (albo ujemne) możemy sobie śmiało mnożyć/dzielić.

Na przykład jeśli dziedziną (o dziedzinie będzie jeszcze post powtórkowy później) x jest zbiór liczb (0,+{infty}), to wiemy, że x jest na pewno dodatni.

Wtedy MOŻEMY machnąć sobie…

x open parentheses x minus 1 close parentheses greater than 0 /:x

x minus 1 greater than 0

…pamiętając jednak o tym, żeby w otrzymanym zbiorze rozwiązań uwzględnić dziedzinę (wziąść z niego tylko x{in}(0,+{infty})).

 

 

Jedna z wielu opinii o naszych Kursach...

Zakupiłem cały pakiet kursów mimo, że już dobijam do wieku emerytalnego i jestem po studiach technicznych. Nie znaczy to jednak , że zainteresowanie matematyką osłabło. Wręcz przeciwnie! Jestem w trakcie ich „konsumowania”. Mogę stwierdzić jedno – to co robicie jest fantastyczne. Pomoc dla wszystkich, czy to uczniów szkół ponadpodstawowych czy też dla studentów. To nie są pieniądze wyrzucone w błoto!

Aleksander M.

Szukasz korepetycji z matematyki na poziomie studiów lub szkoły średniej? A może potrzebujesz kursu, który przygotuje Cię do matury?

Jesteśmy ekipą eTrapez. Uczymy matematyki w sposób jasny, prosty i bardzo dokładny - trafimy nawet do najbardziej opornego na wiedzę.

Stworzyliśmy tłumaczone zrozumiałym językiem Kursy video do pobrania na komputer, tablet czy telefon. Włączasz nagranie, oglądasz i słuchasz, jak na korepetycjach. O dowolnej porze dnia i nocy.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Wymagane pola są oznaczone *

Twój komentarz będzie dostępny publicznie na naszej stronie razem z powyższym podpisem. Adres email nie będzie dostępny publicznie. Komentarz możesz zmienić, lub usunąć w każdej chwili. Dane osobowe zawarte w komentarzu i podpisie traktujemy zgodnie z naszą polityką prywatności.

  1. Krystian Karczyński pisze:

    @Bob Tak, oczywiście, poprawiłem i dziękuję za zwrócenie uwagi.

  2. Bob pisze:

    W tym miejscu jest błąd

    albo:

    x less or equal than negative 1 /times open parentheses negative 1 close parentheses

    x greater or equal than 1 (znak nierówności się zmienił po pomnożeniu obu stron przez liczbę ujemną)

     

    zakładam że miał Pan na myśli   –x less or equal than negative 1 na samym początku prawda ?83/8b/a40fbf04d8fbbd6bbdd9e916cfb5.png” alt=”A subscript 2 equals fraction numerator partial differential squared f open parentheses P subscript 2 close parentheses over denominator partial differential x squared end fraction equals 2 e to the power of negative open parentheses 0 squared plus 0 squared close parentheses end exponent open parentheses 1 minus 5 times 0 squared minus 1 squared plus 2 times 0 to the power of 4 plus 2 times 0 squared times 1 squared close parentheses equals 2 e to the power of negative 1 end exponent times 0 equals 0″ align=”middle” data-mathml=”«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»A«/mi»«mn»2«/mn»«/msub»«mo»=«/mo»«mfrac»«mrow»«msup»«mo»§#8706;«/mo»«mn»2«/mn»«/msup»«mi»f«/mi»«mfenced»«msub»«mi»P«/mi»«mn»2«/mn»«/msub»«/mfenced»«/mrow»«mrow»«mo»§#8706;«/mo»«msup»«mi»x«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfrac»«mo»=«/mo»«mn»2«/mn»«msup»«mi»e«/mi»«mrow»«mo»-«/mo»«mfenced»«mrow»«msup»«mn»0«/mn»«mn»2«/mn»«/msup»«mo»+«/mo»«msup»«mn»0«/mn»«mn»2«/mn»«/msup»«/mrow»«/mfenced»«/mrow»«/msup»«mfenced»«mrow»«mn»1«/mn»«mo»-«/mo»«mn»5«/mn»«mo»§#183;«/mo»«msup»«mn»0«/mn»«mn»2«/mn»«/msup»«mo»-«/mo»«msup»«mn»1«/mn»«mn»2«/mn»«/msup»«mo»+«/mo»«mn»2«/mn»«mo»§#183;«/mo»«msup»«mn»0«/mn»«mn»4«/mn»«/msup»«mo»+«/mo»«mn»2«/mn»«mo»§#183;«/mo»«msup»«mn»0«/mn»«mn»2«/mn»«/msup»«mo»§#183;«/mo»«msup»«mn»1«/mn»«mn»2«/mn»«/msup»«/mrow»«/mfenced»«mo»=«/mo»«mn»2«/mn»«msup»«mi»e«/mi»«mrow»«mo»-«/mo»«mn»1«/mn»«/mrow»«/msup»«mo»§#183;«/mo»«mn»0«/mn»«mo»=«/mo»«mn»0«/mn»«/math»” />

    B subscript 2 equals fraction numerator partial differential squared f open parentheses P subscript 2 close parentheses over denominator partial differential x partial differential y end fraction equals negative 4 times 0 times 1 times open parentheses 2 minus 0 squared minus 1 squared close parentheses times e to the power of negative open parentheses 0 squared plus 1 squared close parentheses end exponent equals 0

    C subscript 2 equals fraction numerator partial differential squared f open parentheses P subscript 2 close parentheses over denominator partial differential y squared end fraction equals 2 e to the power of negative open parentheses 0 squared plus 1 squared close parentheses end exponent open parentheses 1 minus 0 squared minus 5 times 1 squared plus 2 times 0 squared times 1 squared plus 2 times 1 to the power of 4 close parentheses equals 2 e to the power of negative 1 end exponent times open parentheses negative 2 close parentheses equals negative 4 over e

    Ponieważ P subscript 2 open parentheses 0 comma 1 close parentheses comma space P subscript 3 open parentheses 0 comma negative 1 close parentheses , a funkcja

    f open parentheses x comma y close parentheses equals open parentheses x squared plus y squared close parentheses times e to the power of negative open parentheses x squared plus y squared close parentheses end exponent jest parzysta, to

    A subscript 3 equals A subscript 2 equals 0

    B subscript 3 equals B subscript 2 equals 0

    C subscript 3 equals C subscript 2 equals negative 4 over e

    Dalej liczymy hesjan:

    H equals open vertical bar table row A B row B C end table close vertical bar equals A times C minus B squared

    H subscript 1 equals A subscript 1 times C subscript 1 minus B subscript 1 superscript 2 equals 2 times 2 minus 0 squared equals 4

    H subscript 2 equals A subscript 2 times C subscript 2 minus B subscript 2 superscript 2 equals 0 times open parentheses negative 4 over e close parentheses minus 0 squared equals 0

    H subscript 3 equals H subscript 2 equals 0

    Ponieważ

    H subscript 1 equals 4 greater than 0 comma space A subscript 1 equals 2 greater than 0,

    to w punkcie P subscript 1 open parentheses 0 comma 0 close parentheses funkcja osiąga minimum lokalne, i

    f subscript m i n end subscript equals f open parentheses 0 comma 0 close parentheses equals open parentheses 0 squared plus 0 squared close parentheses times e to the power of negative open parentheses 0 squared plus 0 squared close parentheses end exponent equals 0

    Ponieważ

    H subscript 2 equals H subscript 3 equals 0

    to w punktach P subscript 2 open parentheses 0 comma 1 close parentheses oraz P subscript 3 open parentheses 0 comma negative 1 close parentheses sytuacja jest nieznana (potrzebujemy wiele badań). 

     

    Jednak, jak już mówiono powyżej, współrzędne tych punktów spełniają warunek 

    x squared plus y squared equals 1

    dlatego w tych punktach nie ma ekstrema lokalne.

    Odpowiedź:

    f subscript m i n end subscript equals f open parentheses 0 comma 0 close parentheses equals 0

    5b/4e/4a87bb1fa7976d920fd270009d4b.png” alt=”fraction numerator partial differential squared f over denominator partial differential x partial differential y end fraction equals fraction numerator partial differential squared f over denominator partial differential y partial differential x end fraction equals 4″ align=”middle” data-mathml=”«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«msup»«mo»§#8706;«/mo»«mn»2«/mn»«/msup»«mi»f«/mi»«/mrow»«mrow»«mo»§#8706;«/mo»«mi»x«/mi»«mo»§#8706;«/mo»«mi»y«/mi»«/mrow»«/mfrac»«mo»=«/mo»«mfrac»«mrow»«msup»«mo»§#8706;«/mo»«mn»2«/mn»«/msup»«mi»f«/mi»«/mrow»«mrow»«mo»§#8706;«/mo»«mi»y«/mi»«mo»§#8706;«/mo»«mi»x«/mi»«/mrow»«/mfrac»«mo»=«/mo»«mn»4«/mn»«/math»” />

    fraction numerator partial differential squared f over denominator partial differential y squared end fraction equals 12 y squared minus 4

     

    Macierz Hessego ma postać:

    H subscript f left parenthesis x comma y right parenthesis equals open square brackets table row cell 12 x squared minus 4 end cell 4 row 4 cell 12 y squared minus 4 end cell end table close square brackets

     

    H subscript f left parenthesis square root of 2 comma negative square root of 2 right parenthesis equals H subscript f left parenthesis negative square root of 2 comma square root of 2 right parenthesis equals open square brackets table row 20 4 row 4 20 end table close square brackets

    M subscript 1 left parenthesis square root of 2 comma negative square root of 2 right parenthesis equals M subscript 1 left parenthesis negative square root of 2 comma square root of 2 right parenthesis equals 20 greater than 0

    M subscript 2 left parenthesis square root of 2 comma negative square root of 2 right parenthesis equals M subscript 2 left parenthesis negative square root of 2 comma square root of 2 right parenthesis equals 20 times 20 minus 4 times 4 equals 384 greater than 0

    Zatem w punktach open parentheses square root of 2 comma negative square root of 2 close parentheses oraz open parentheses negative square root of 2 comma square root of 2 close parentheses podana funkcja ma minima lokalne właściwe. 

     

    H subscript f left parenthesis 0 comma 0 right parenthesis equals open square brackets table row cell negative 4 end cell 4 row 4 cell negative 4 end cell end table close square brackets

    M subscript 2 left parenthesis 0 comma 0 right parenthesis equals open parentheses negative 4 close parentheses times open parentheses negative 4 close parentheses minus 4 times 4 equals 0

    Na razie nie wiemy, czy w punkcie open parentheses 0 comma 0 close parentheses funkcja f ma ekstremum. 

    Dla x equals 0 mamy: f left parenthesis 0 comma y right parenthesis equals y to the power of 4 minus 2 y squared. Wtedy punkt open parentheses 0 comma 0 close parentheses to maksimum lokalne funkcji f.

    Dla y equals x mamy:
     f left parenthesis x comma x right parenthesis equals x to the power of 4 plus x to the power of 4 minus 2 x squared plus 4 x squared minus 2 x squared equals 2 x to the power of 4. Wtedy
    punkt open parentheses 0 comma 0 close parentheses to minimum lokalne.

    Zatem w punkcie open parentheses 0 comma 0 close parentheses funkcja f nie posiada ekstremum.

     

    Musimy zbadać jeszcze wartości na brzegach wskazanego obszaru ograniczonego prostymi: x equals 0 comma space y equals 0 comma space x plus y equals 5.

     

  3. Artur pisze:

    Na Pańskim kursie Liczb Zespolonych spotkałem się z obustronnym dzieleniem przez jednostkę urojoną “i”.

    I tak zastanawiam się jak to jest z tym dzieleniem. Skoro i^2 to -1, a i = \sqrt(-1), to do końca nie wiadomo czy dzieląc przez “i” dzielimy przez liczbę ujemną, bo przecież pierwiastek z takowej w rzeczywistych nie istnieje ;).

    No, ale jakbyśmy to sobie wszystko do kwadratu podnieśli (obie strony nierówności) i podzielili przez i^2 które przecież wynosi -1, to znak wypadałoby zmienić, prawda?

    Z góry dziękuję za odpowiedź, kurs fajny 🙂

    1. Krystian Karczyński pisze:

      Cześć!

      Dzięki za pytanie. Serio jest gdzieś tam dzielenie przez “i”? Może jest ale na pewno w RÓWNOŚCI, a nie w NIERÓWNOŚCI.

      Mnożyć i dzielić równości przez liczby dodatnie, ujemne i takie, o których nie wiem, czy są dodatnie, czy ujemne można bez problemu (no chyba, że nie chcemy po takim pomnożeniu “zepsuć” wykresu funkcji po lewej stronie równania – jak pokazuję w moim Kursie Pochodnych).

      Problem jest tylko z dzieleniem i mnożeniem nierówności, w których nie możemy np. podzielić przez ‘x’, gdy nie wiemy, czy x jest liczbą dodatnią, czy ujemną.

      Z zespolonymi liczbami w ogóle nie bawimy się w nierówności – bo nie określamy liczb zespolonych nie-rzeczywistych jako “dodatnich”, albo “ujemnych”, albo “większych” albo “mniejszych” 🙂

    2. Artur pisze:

      O proszę.

    3. Krystian Karczyński pisze:

      Ma Pan całkowitą rację, ten ostatnie przykład z Lekcji 7 absolutnie nie powinien znaleźć się w Kursie, bo wyszła z niego nierówność zespolona…

      Czyli cały przykład jest źle ułożony przeze mnie i nie da się go “rozwiązać”.

      Wszystkie wcześniejsze nierówności są O.K., bo rachują na sprzężeniach, częściach rzeczywistych i urojonych – czyli liczbach rzeczywistych.

      Przepraszam i bardzo dziękuję za świetne i trafne pytanie.

  4. Krystian Karczyński pisze:

    Tak, tak, zgadza się o to mi chodziło. Rozwiązanie nierówności x-1>0 to zbiór (1,+{infty}), dziedzina to zbiór (0,+{infty}), czyli rozwiązanie CAŁEJ nierówności to:
    (1,+{infty}) (część rozwiązania ostatniej nierówności i dziedziny)

  5. Mateusz pisze:

    …pamiętając jednak o tym, żeby w otrzymanym zbiorze rozwiązań uwzględnić dziedzinę:

    Mamy dwa warunki:
    x>1 i x należy (0, nieskończoność) więc rozwiązaniem będzie zbiór x należy (1, nieskończoność)

    To tak a propos ostatnich dwóch linijek…