Horizontal and oblique asymptotes of functions

Picture of Krystian Karczyński

Krystian Karczyński

The relationship between horizontal and oblique asymptotes is as follows: horizontal asymptotes are special oblique asymptotes. Therefore, every horizontal asymptote is an oblique asymptote, but not every oblique is horizontal.

This can and should be used to shorten the computing of function asymptotes. There are two basic approaches to this topic:

1. First, we compute the horizontal asymptotes

The condition for the existence of a horizontal asymptote of a function is:

or

If we get horizontal asymptotes, we no longer count the diagonal ones (because it’s as if we already had the diagonal ones – we remember that horizontal is diagonal). However, if we don’t get the horizontal ones, we have a problem – we have to recalculate the diagonal asymptotes.

Of course, the situation is a bit more complicated: a horizontal asymptote may occur in , and “don’t appear” in . In such a case, we would not investigate the existence of an oblique asymptote in (because it’s already there), but we would have to investigate its existence in .

2. First, we compute the diagonal asymptotes

…and then the horizontal asymptotes will appear (or not) automatically, we just need to interpret the answers correctly. The downside is that the conditions for the existence of an oblique asymptote of a function are slightly more complicated:

and

or:

and

…and the advantage is that once we compute them, we don’t have to compute anything further. If the conditions are met and the number (or ) from the conditions for the existence of an oblique asymptote will be equal , this means that the oblique asymptote is a horizontal asymptote.

To further shorten your work, you can immediately calculate:

and

And the breakdown into counting separately the conditions for and only when necessary (when it will make a difference in the outcome of whether x tends to , or to .

konometria jest dosyć młodą dziedziną wypływającą z ekonomii i matematyki. W praktyce, dzięki modelom ekonometrycznym, możesz „zmierzyć gospodarkę”.Polega to konkretnie na zmierzeniu, jak zachowuje się jedna zmienna w zależności od innych. I na podstawie analizy tego, co było, możesz określać, co będzie się działo w przyszłości.

Wykorzystasz do tego przeróżne obliczenia, testy, schematy. Jedne będą bardzo proste, inne trudniejsze. Jednak najczęściej będzie się liczyło nie to, jak dojdziesz do wyniku, ale jak go zinterpretujesz, odczytasz i jakie wnioski wyciągniesz.

Poniższe Wykłady dotykają najważniejszych pojęć teoretycznych. Jestem przekonana, że pomogę Ci odkrywaniu tego, czym jest ekonometria. I przy okazji uda Ci się zaliczyć ten przedmiot na studiach.

Leave a Reply

Your email address will not be published. Required fields are marked *

Your comment will be publicly visible on our website along with the above signature. You can change or delete your comment at any time. The administrator of personal data provided in this form is eTrapez Usługi Edukacyjne E-Learning Krystian Karczyński. The principles of data processing and your related rights are described in our Privace Policy (polish).


Kategorie

Wirtualny nauczyciel AI działający w przeglądarce internetowej.