الإحداثيات الإهليلجية (التكاملات الثنائية)

Picture of Krystian Karczyński

Krystian Karczyński

تحدث في الحياة مواقف عندما تكون منطقة التكامل في التكامل الثنائي هي الإهليلج….

ماذا نفعل في هذه الحالة؟

الإحداثيات الإهليلجية

طريقة أنيقة للحل هي عادة استخدام ما يسمى بالإحداثيات الإهليلجية. هذا يشبه إلى حد كبير الإحداثيات القطبية، آلية العمل مشابهة تمامًا، فقط تستبدل x و y بشيء آخر ويكون الجاكوبي مختلفًا. تفسير ‘r’ أيضًا مختلف. لذلك، إذا كنت تعرف كيفية التحويل إلى الإحداثيات القطبية (ويتم ذلك غالبًا عندما تكون منطقة التكامل هي دائرة) فسوف تفهم بسهولة الإحداثيات الإهليلجية أيضًا.

لذلك لدينا التكامل: ومنطقة التكامل محدودة بإهليلج مركزه في نقطة الأصل، ومعادلته هي: . دعنا نتأكد من أن الرقم 1 موجود على الجانب الأيمن من معادلة الإهليلج، حسنًا؟ إذا كان الرقم على سبيل المثال 9، يمكنك جعله بسهولة 1 عن طريق قسمة كلا الجانبين من المعادلة على 9.

منطقة التكامل المرسومة تبدو هكذا:

Elipsa

ماذا تعني a و b واضح في الرسم. يجب الانتباه، لأنه إذا كان في مقام معادلة الإهليلج تحت على سبيل المثال 9، فهذا يعني أن ، من الواضح لماذا، أليس كذلك؟

الآن بعد أن أصبحت لدينا هذه “الوضعية النقية”، ننتقل إلى الإحداثيات الإهليلجية، ونستبدل:

معنى المتغيرات في الإحداثيات الإهليلجية

الزاوية تعني بالضبط نفس ما تعنيه في الإحداثيات القطبية، و تعني شيئًا مختلفًا. في المسائل الأساسية للإهليلج الذي يعطى بمعادلة جميلة افترض ببساطة أن يتغير من الصفر إلى الواحد (في الحالات الأكثر تعقيدًا أدخل و إلى معادلة الإهليلج واحسب الحد العلوي لـ r).

الجاكوبي

الجاكوبي في الإحداثيات الإهليلجية يساوي .

بتذكر الجاكوبي ننتقل إذًا إلى التكامل في الإحداثيات الإهليلجية:

حيث المتغيرات و مقيدة: في الحدود من الصفر إلى الواحد، و حسب ما إذا كنا نتحدث عن الإهليلج كله، أو نصفه، أو ربع الإهليلج مثلًا – كما في الإحداثيات القطبية.

فقط خذ وابدأ الحساب.

مثال

احسب التكامل ، حيث D هو الإهليلج بمعادلة: .

وفقًا للنظام السابق، نستبدل:

نأخذ منطقة التكامل:

ونحسب التكامل:

الذي بالطبع أصبح إجراءً شكليًا 🙂

konometria jest dosyć młodą dziedziną wypływającą z ekonomii i matematyki. W praktyce, dzięki modelom ekonometrycznym, możesz „zmierzyć gospodarkę”.Polega to konkretnie na zmierzeniu, jak zachowuje się jedna zmienna w zależności od innych. I na podstawie analizy tego, co było, możesz określać, co będzie się działo w przyszłości.

Wykorzystasz do tego przeróżne obliczenia, testy, schematy. Jedne będą bardzo proste, inne trudniejsze. Jednak najczęściej będzie się liczyło nie to, jak dojdziesz do wyniku, ale jak go zinterpretujesz, odczytasz i jakie wnioski wyciągniesz.

Poniższe Wykłady dotykają najważniejszych pojęć teoretycznych. Jestem przekonana, że pomogę Ci odkrywaniu tego, czym jest ekonometria. I przy okazji uda Ci się zaliczyć ten przedmiot na studiach.

Leave a Reply

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *

سيكون تعليقك متاحًا للعامة على موقعنا مع التوقيع أعلاه. يمكنك تغيير تعليقك أو حذفه في أي وقت. مسؤول البيانات الشخصية المقدمة في هذا النموذج هو eTrapez Usługi Edukacyjne E-Learning Krystian Karczyński. يتم وصف قواعد معالجة البيانات وحقوقك المتعلقة بها في سياسة الخصوصية.


Kategorie

Wirtualny nauczyciel AI działający w przeglądarce internetowej.