Випускники запитують, eTrapez відповідає. Виведення формули висоти в прямокутному трикутнику.
Krystian Karczyński
Засновник та керівник сервісу eTrapez.
Магістр математики Познанської Політехніки (Польща). Репетитор з математики з багаторічним досвідом. Творець перших Курсів eTrapez, які здобули величезну популярність серед студентів у всій Польщі.
Живе у Щецині (Польща). Любить прогулянки лісом, відпочинок на пляжі та каякінг.
Цей пост присвячений фрагменту завдання на ЗНО, яке надіслав мені електронною поштою один випускник. Проте варто з цікавості подивитися і більше ніколи не казати, що математика в університеті важча, ніж розширена в школі.
🙂
Частина Завдання
Маємо таку ситуацію:
Необхідно показати, що виділений червоним відрізок має довжину . Це, звичайно, лише маленький фрагмент усього завдання. Вгадайте, про що це? Про послідовності, звісно 🙂
Отже, тут можна скористатися часто використовуваною в задачах на висоту прямокутного трикутника хитрістю, яка полягає в застосуванні подібних трикутників, улюблених усіма випускниками.
1. Трикутники (найменший) і (найбільший, вписаний у коло) подібні (вони мають 2 однакові кути: прямий і <DAC, тобто третій кут також однаковий, отже, ми маємо подібність за двома кутами). Трикутники (середній) і (найбільший знову) також подібні (вони мають 2 однакові кути: прямий і <CBD, тобто третій кут також однаковий, тобто ми знову маємо подібність за двома кутами). Якщо трикутники і подібні до , то вони також подібні один до одного, і ось що ми помічаємо:
подібний до
2. Якщо ці трикутники подібні, то співвідношення ВІДПОВІДНИХ сторін будуть рівні. Звичайно, ми вибираємо співвідношення, що містять червоний відрізок, довжину якого позначимо як .
У трикутнику співвідношення НАЙКОРОТШОЇ сторони до СЕРЕДНЬОЇ буде рівним:
У трикутнику співвідношення НАЙКОРОТШОЇ сторони до СЕРЕДНЬОЇ буде рівним:
Оскільки трикутники подібні, то існує рівність:
3. З цієї рівності визначаємо h, тобто довжину червоного відрізка. Перемножуємо хрест-навхрест, як це було в пропорціях, і отримуємо:
Тобто:
Тобто це те, що нам потрібно було показати на початку. БІНГО.
Висновок такий: при визначенні висоти в прямокутному трикутнику (той, що опускається на гіпотенузу звичайно), часто потрібно користуватися подібністю трикутників, як показано вище.
І ще один висновок: розширена математика в школі могла бути дійсно складною. Тільки в університеті ми можемо зітхнути з полегшенням 🙂
Шукаєте репетитора з математики для університетського рівня або школи? А може вам потрібен курс, який підготує вас до вступних іспитів?
Ми - команда eTrapez. Ми вчимо математику ясно, просто і дуже детально - дістанемося навіть до найбільш відсторонених від знань.
Ми створили курси відео зрозумілою мовою для завантаження на комп'ютер, планшет або телефон. Вмикайте запис, дивіться і слухайте, як на репетиторстві. У будь-який час дня та ночі.