blog

Maturzyści pytają, eTrapez odpowiada

Krystian

Założyciel i szef serwisu eTrapez.

Magister matematyki Politechniki Poznańskiej. Korepetytor matematyki z wieloletnim stażem. Twórca Kursów eTrapez, które zdobyły ogromną popularność wśród studentów w całej Polsce.

Mieszka koło Szczecina. Lubi spacery po lesie, plażowanie i piłkę nożną.


Ten post poświęcony jest gościnnie fragmentowi zadania maturalnego, o który przesłał mi na maila pewien maturzysta. Warto jednak sobie zerknąć z ciekawości i nie powtarzać już nigdy więcej, że matematyka na studiach jest trudniejsza niż rozszerzona w szkole średniej. 🙂

Kawałek Zadania

Mamy następującą sytuację:

Obrazek do zadania

Należy pokazać, że zaznaczony na czerwono odcinek ma długość sqrt{ac}. Całość oczywiście jest tylko malutkim fragmentem całego zadania, zgadnijcie na co? Na ciągi oczywiście 🙂

No więc można tu skorzystać z często wykorzystywanego w zadaniach z wysokością trójkąta prostokątnego patentu na „ulubione” przez wszystkich maturzystów trójkąty podobne.

1. Trójkąty {Delta}ADC (ten najmniejszy) i {Delta}ABC (ten największy, wpisany w okrąg) są podobne (mają 2 takie same kąty: prosty i <DAC, czyli trzeci kąt też jest taki sam, czyli mamy KKK). Trójkąty {Delta}CDB (ten średni) i {Delta}ABC (ten największy znowu) też są podobne (mają 2 takie same kąty: prosty i <CBD, czyli trzeci kąt też jest taki sam, czyli znowu mamy KKK). Jeśli trójkąty: {Delta}ADC i {Delta}CDB są podobne do {Delta}ABC, to są także podobne do siebie  i o to chodziło i to zauważamy:

{Delta}ADC jest podobny do {Delta}CDB

2. Jeżeli te trójkąty są podobne, to stosunki ODPOWIADAJĄCYCH sobie boków będą równe. Oczywiście dobieramy te stosunki, zawierające zaznaczony na czerwono odcinek, którego długość oznaczmy powiedzmy jako h.

W trójkącie {Delta}ADC stosunek boku NAJKRÓTSZEGO przez bok ŚREDNI będzie równy:

a/h

W trójkącie {Delta}CDB stosunek boku NAJKRÓTSZEGO przez bok ŚREDNI będzie równy:

h/c

Skoro trójkąty są podobne, to zachodzi równość:

a/h=h/c

3. Z równości wyznaczamy h, czyli długość zaznaczonego na czerwono odcinka. Mnożymy na krzyż jak to w proporcjach bywało i mamy:

h*h=a*c

h^2=ac

Czyli:

h=sqrt{ac}

Czyli to co mieliśmy dokładnie pokazać na początku. BINGO.

Morał wynosimy taki: wyznaczając wysokość w trójkącie prostokątnym (tą opadającą na przeciwprostokątną of course) często trzeba posłużyć się podobieństwem trójkątów, tak jak wyżej.

I jeszcze taki, że matematyka rozszerzona w szkole średniej potrafiła naprawdę ukąsić. Dopiero na studiach można odetchnąć 🙂

 

Jedna z wielu opinii o naszych Kursach...

Świetny kurs, zagadnienia wytłumaczone w bardzo przystępny sposób. Niech o jego jakości świadczy fakt, że po jednorazowym wysłuchaniu i zrobieniu wszystkich zadań zdałam statystykę, z której miałam już dwa razy warunek.

Ewelina

Szukasz korepetycji z matematyki na poziomie studiów lub szkoły średniej? A może potrzebujesz kursu, który przygotuje Cię do matury?

Jesteśmy ekipą eTrapez. Uczymy matematyki w sposób jasny, prosty i bardzo dokładny - trafimy nawet do najbardziej opornego na wiedzę.

Stworzyliśmy tłumaczone zrozumiałym językiem Kursy video do pobrania na komputer, tablet czy telefon. Włączasz nagranie, oglądasz i słuchasz, jak na korepetycjach. O dowolnej porze dnia i nocy.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *

Twój komentarz będzie dostępny publicznie na naszej stronie razem z powyższym podpisem. Adres email nie będzie dostępny publicznie. Komentarz możesz zmienić, lub usunąć w każdej chwili. Dane osobowe zawarte w komentarzu i podpisie traktujemy zgodnie z naszą polityką prywatności.

  1. Adam pisze:

    Można było to też policzyć układając 3 równania Pitagorasa i z tych równań wyznaczyć h

    1. Krystian Karczyński pisze:

      Pewno można. Ja w średniej też wszystko układami równań i Pitagorasami rozwalałem. No może prawie wszystko.

  2. Mateusz pisze:

    Rany, dziękuję, że tak profesjonalnie potraktował pan moje pytanie. Jestem za to ogromnie wdzięczny. Z kolegą doszliśmy jednak o wiele szybciej, czemu ten odcinek jest równy pierwiastkowi z ac. Otóż kąt ACB jako oparty na średnicy jest prosty, a wysokość poprowadzona z wierzchołka kata prostego dzieli przeciwległy bok na odcinki w taki sposób, że h^2 = a*c . Ten wzór jak przypuszczam wynika pewnie z podobieństwa, tak jak pan to wykazał. Jeszcze raz wielkie dzięki…

    1. Krystian Karczyński pisze:

      Łeeee… Z wzorem nie ma zabawy 🙂