blog

मातुर छात्र पूछते हैं, eTrapez उत्तर देता है। समकोण त्रिभुज में ऊंचाई के सूत्र का व्युत्पत्ति।

Krystian Karczyński

कृष्टियन कार्चिंस्की

eTrapez सेवा के संस्थापक और प्रमुख।

पोलैंड के पोज़्नान तकनीकी विश्वविद्यालय के गणित में मास्टर। वर्षों से गणित के निजी शिक्षक। पोलैंड के सभी छात्रों के बीच बहुत लोकप्रिय हो चुके eTrapez के पहले कोर्सेज के निर्माता।

स्ज़ेचिन (पोलैंड) में रहते हैं। जंगल में टहलना, समुद्र तट पर आराम करना और कयाकिंग करना पसंद है।


यह पोस्ट एक हाई स्कूल परीक्षा के सवाल के अंश को समर्पित है, जिसे एक हाई स्कूल के छात्र ने मुझे ईमेल के माध्यम से भेजा था। लेकिन जिज्ञासा से इसे देखना और फिर कभी यह नहीं कहना कि विश्वविद्यालय में गणित हाई स्कूल के एडवांस्ड गणित से कठिन है, एक अच्छा विचार है।

🙂

सवाल का हिस्सा

हमारे पास निम्नलिखित स्थिति है:

सवाल की तस्वीर

हमें दिखाना है कि लाल रंग से चिह्नित खंड की लंबाई है। यह पूरी सवाल का केवल एक छोटा सा हिस्सा है। अंदाज़ा लगाएं कि यह किस पर है? सीरीज पर है, बेशक 🙂

तो, यहां हम एक ट्रिक का उपयोग कर सकते हैं जो अक्सर त्रिभुज की ऊंचाई के सवालों में उपयोग होती है – समकक्ष त्रिभुज, जो सभी हाई स्कूल के छात्रों के “पसंदीदा” होते हैं।

1. त्रिभुज (सबसे छोटा) और (सबसे बड़ा, वृत्त में अंकित) समान होते हैं (उनके 2 समान कोण होते हैं: समकोण और <DAC, इसलिए तीसरा कोण भी समान होता है, जो हमें AA समानता देता है)। त्रिभुज (मध्यम) और (फिर से सबसे बड़ा) भी समान होते हैं (उनके 2 समान कोण होते हैं: समकोण और <CBD, इसलिए तीसरा कोण भी समान होता है, जो हमें फिर से AA समानता देता है)। यदि त्रिभुज और के समान हैं, तो वे भी एक दूसरे के समान होते हैं, और यही हम नोटिस करते हैं:

समान है

2. अगर ये त्रिभुज समान हैं, तो संबंधित पक्षों के अनुपात समान होंगे। बेशक, हम उन अनुपातों को चुनते हैं जिनमें लाल रंग से चिह्नित खंड होता है, जिसकी लंबाई हम के रूप में मानते हैं।

त्रिभुज में, सबसे छोटे पक्ष का मध्यम पक्ष के साथ अनुपात समान होगा:

त्रिभुज में, सबसे छोटे पक्ष का मध्यम पक्ष के साथ अनुपात समान होगा:

क्योंकि त्रिभुज समान हैं, एक समता होती है:

3. इस समता से, हम h निकालते हैं, जो लाल रंग से चिह्नित खंड की लंबाई है। हम अनुपातों की तरह क्रॉस गुणा करते हैं और प्राप्त करते हैं:

इसका मतलब है:

यानी हमने जो शुरुआत में दिखाना था वह सही साबित हुआ। बिंगो।

मोरल यह है: जब एक समकोण त्रिभुज में ऊंचाई निकाल रहे हों (जो कर्ण पर गिरती है बिल्कुल), तो अक्सर हमें त्रिभुज की समानता का उपयोग करना पड़ता है, जैसा कि ऊपर दिखाया गया है।

और एक और मोरल यह है कि उच्च विद्यालय में एडवांस्ड गणित वास्तव में कठिन हो सकती थी। केवल विश्वविद्यालय में हम वास्तव में आराम से सांस ले सकते हैं 🙂


क्या आप कॉलेज या हाई स्कूल स्तर की गणित की ट्यूशन खोज रहे हैं? या शायद आपको एक ऐसा कोर्स चाहिए जो आपको प्रवेश परीक्षा के लिए तैयार करे?

हम eTrapez टीम हैं। हम स्पष्ट, सरल और बहुत ही विस्तृत तरीके से गणित सिखाते हैं - हम ज्ञान के प्रति सबसे अधिक प्रतिरोधी व्यक्ति तक पहुंचते हैं।

हमने समझने योग्य भाषा में व्याख्यान वीडियो कोर्स बनाए हैं जिन्हें कंप्यूटर, टैबलेट या फोन पर डाउनलोड किया जा सकता है। आप रिकॉर्डिंग चालू करते हैं, देखते और सुनते हैं, जैसे कि ट्यूशन पर हों। दिन या रात के किसी भी समय।

प्रातिक्रिया दे

आपका ईमेल पता प्रकाशित नहीं किया जाएगा. आवश्यक फ़ील्ड चिह्नित हैं *

आपकी टिप्पणी उपरोक्त हस्ताक्षर के साथ हमारी साइट पर सार्वजनिक रूप से उपलब्ध होगी। आप किसी भी समय अपनी टिप्पणी को बदल सकते हैं या हटा सकते हैं। इस फॉर्म में प्रदान किए गए व्यक्तिगत डेटा का प्रशासक eTrapez Usługi Edukacyjne E-Learning Krystian Karczyński है। डेटा प्रोसेसिंग के नियम और इससे संबंधित आपके अधिकार गोपनीयता नीति में वर्णित हैं।