गणन संपूर्ण अंक में डेल्टा शून्य के बराबर है

एक द्विघात त्रिपद को घटकों में विभाजित करना

तर्कसंगत अनिश्चित समाकल में, हमें अक्सर एक द्विघात त्रिपद को घटकों में विभाजित करने की आवश्यकता होती है: हम ऐसा करते हैं निश्चित रूप से सूत्र के माध्यम से: , जो काम करता है जब increment greater than 0

तर्कसंगत समाकल और डेल्टा बराबर 0


लेकिन जब डेल्टा ठीक 0 होता है, तब यह द्विपद कैसा दिखता है? उदाहरण के लिए, यह घटक कैसे दिखेगा: ?

क्या ऐसा है:  ?

बिल्कुल नहीं… हाई स्कूल से हमें याद है कि अगर , तो हमें वास्तव में एक मूल मिलता है, लेकिन यह एक दोहरा मूल है। इसलिए हमारे उदाहरण में, हम कह सकते हैं: , जिसका मतलब है कि द्विघात त्रिपद को घटकों में विभाजित करने से यह दिखता है:

इसका तर्कसंगत अनिश्चित समाकल में काफी प्रभाव होता है जब इसे सरल अंशों में विभाजित किया जाता है।

उदाहरण

हम एक उदाहरण लेते हैं:

हम अंश को बिना समाकल के ही अलग करते हैं और लिखते हैं:

हम हर नीचे वाले पद से x को बाहर निकालते हैं:

नीचे के द्विघात त्रिपद से डेल्टा की गणना की जाती है, जो 0 है, और हम पाते हैं कि मूल (-1) है। इसे घटकों में विभाजित करते हुए हम पाते हैं:

और इसे सरल अंशों में विभाजित करते हुए:

Krystian Karczyński

Założyciel i szef serwisu eTrapez.

Magister matematyki Politechniki Poznańskiej. Korepetytor matematyki z wieloletnim stażem. Twórca pierwszych Kursów eTrapez, które zdobyły ogromną popularność wśród studentów w całej Polsce.

Mieszka w Szczecinie. Lubi spacery po lesie, plażowanie i kajaki.

प्रातिक्रिया दे

आपका ईमेल पता प्रकाशित नहीं किया जाएगा. आवश्यक फ़ील्ड चिह्नित हैं *

आपकी टिप्पणी उपरोक्त हस्ताक्षर के साथ हमारी साइट पर सार्वजनिक रूप से उपलब्ध होगी। आप किसी भी समय अपनी टिप्पणी को बदल सकते हैं या हटा सकते हैं। इस फॉर्म में प्रदान किए गए व्यक्तिगत डेटा का प्रशासक eTrapez Usługi Edukacyjne E-Learning Krystian Karczyński है। डेटा प्रोसेसिंग के नियम और इससे संबंधित आपके अधिकार गोपनीयता नीति में वर्णित हैं।