Kalkulator granice funkcji (NIEAKTUALNE) + nowy kalkulator

Ogłoszenie

Niestety, po ponad 12 latach od udostępnienia przeze mnie darmowego kalkulatora do granic funkcji, musiałem go “wyłączyć”.

Kalkulator był prostym “widgetem” strony WolframAlpha. Jakiś czas temu Wolframalpha zmienił swoją politykę odnośnie widgetów. Między innymi: przestały one obliczać “na miejscu”, tylko przerzucają użytkownika na stronę WolframAlpha .

Przepraszam za kłopot wszystkich dotychczasowych użytkowników Kalkulatora Do Granic Funkcji.

Nowy kalkulator granic funkcji

Zapraszam też do nowego kalkulatora granic funkcji, stworzonego już przeze mnie w technologii Open Source. Dostęp do niego oraz do innych interaktywnych narzędzi możecie uzyskać w ramach subskrypcji za jedyne 5,99 zł / miesiąc (lub taniej w opcjach kilkumiesięcznych) na stronie:

Interaktywne Zadanie Domowe

A sam kalkulator wygląda tak:

Pozdrawiam i powodzenia!

Krystian Karczyński

Krystian Karczyński

Założyciel i szef serwisu eTrapez.

Magister matematyki Politechniki Poznańskiej. Korepetytor matematyki z wieloletnim stażem. Twórca pierwszych Kursów eTrapez, które zdobyły ogromną popularność wśród studentów w całej Polsce.

Mieszka w Szczecinie. Lubi spacery po lesie, plażowanie i kajaki.

75 Comments

  1. Męczę się długo z tym przykładem i nie ma pojęcia jak go zrobić. Dlaczego w: „lim x dąży do nieskończoności: e^x-x^2″=nieskończoność?

  2. Mam problem z jedną granicą, wyszło mi  0 a robiłem ten przykład metodą mnożenia przez sprzężenie, natomiast na kalkulatorze pokazuje że dąży do nieskończoności.

    lim x->oo    x \sqrt(3) – \sqrt(3n^2+8)

  3. Dobry Wieczór. Przygotowuje się do kolokwium i chciałbym policzyć jedną granicę, a na kalkulatorze wychodzi jakiś dziwny wynik. Raz zero, raz nieskończoność. Przykład:lim przy x -> nieskończoność (3n+7/3n-2)^-4n 

  4. Dzień dobry! Pilnie potrzebuję pomocy z jednym przykładem. Liczę i liczę, a doliczyć się nie mogę.Z gory dziękuję za pomoc 🙂 lim x->oo   (x-lnx) 

  5. Witam! Potrzebuję natychmiastowej pomocy z jednym przykładem. Męczę się strasznie, lecz nie mogę go zrobić. Moja profesorka jest straszna. Z góry dziękuję za pomoc.limit as x \rightwards arrow infinity of fraction numerator e to the power of x minus straight \pi to the power of x over denominator 2 to the power of x minus 3 e to the power of negative x end exponent minus straight \pi end fraction

    1. Granica ta tylko na pierwszy rzut oka wydaje się straszna 🙂

      Wystarczy zauważyć taki myk, że występują tutaj po prostu liczby do potęgi „x”. Liczbę e jak i bold pi można potraktować na równi jakby stała tam 4 czy 5. W takich sytuacjach postępuje typowo, czyli wyciągam przed nawias największe potęgi z licznika i mianownika, pamiętając, że e almost equal to 2 comma 72 oraz straight \pi almost equal to 3 comma 14

      limit as x \rightwards arrow infinity of fraction numerator e to the power of x minus straight \pi to the power of x over denominator 2 to the power of x minus 3 e to the power of negative x end exponent minus straight \pi end fraction equals limit as x \rightwards arrow infinity of fraction numerator straight \pi to the power of x times open parentheses \begin display style straight e to the power of straight x over straight \pi to the power of straight x end style minus 1 close parentheses over denominator 2 to the power of x times open parentheses 1 minus \begin display style fraction numerator 3 straight e to the power of negative straight x end exponent over denominator 2 to the power of straight x end fraction end style minus \begin display style straight \pi over 2 to the power of straight x end style close parentheses end fraction equals limit as x \rightwards arrow infinity of open parentheses straight \pi over 2 close parentheses to the power of x fraction numerator open parentheses \begin display style open parentheses straight e over straight \pi close parentheses to the power of x minus 1 end style close parentheses over denominator open parentheses 1 minus \begin display style 3 over open parentheses 2 e close parentheses to the power of straight x end style minus \begin display style straight \pi over 2 to the power of straight x end style close parentheses end fraction

      Teraz straight \pi over 2 greater than 1 więc w granicy da infinity.  Pozostałe wyrażenia podniesione do potęgi x  dążą do 0 stąd ostateczna granica:

      limit as x \rightwards arrow infinity of open parentheses straight \pi over 2 close parentheses to the power of x fraction numerator open parentheses \begin display style open parentheses straight e over straight \pi close parentheses to the power of x minus 1 end style close parentheses over denominator open parentheses 1 minus \begin display style 3 over open parentheses 2 e close parentheses to the power of straight x end style minus \begin display style straight \pi over 2 to the power of straight x end style close parentheses end fraction equals open square brackets infinity times fraction numerator 0 minus 1 over denominator 1 minus 0 minus 0 end fraction equals infinity times \left parenthesis negative 1 \right parenthesis close square brackets equals bold minus bold infinity 

  6. Witam serdecznie mam problem z taka granica lim x →∞ ((x-3)e^(x/(3-x))-x/e) ma wyjsc -6/e mi jakos wychodzi -3/e i nie wiem co zrobic 🙁

  7. Dobry wieczór, chcąc policzyć granicę z f(x)=\sqrt(x(x+1))-x dążącą do nieskończoności kalkulator pokazuje mi wynik 1/2, z moich obliczeń wynika że jest to 2, proszę o pomoc..

    1. W obliczeniach należy wykonać mnożenie przez sprzężenia tzn.

      limit as x \rightwards arrow negative 1 of fraction numerator square root of 4 x plus 5 end root minus x squared over denominator x squared minus 1 end fraction equals open square brackets 0 over 0 close square brackets equals limit as x \rightwards arrow negative 1 of fraction numerator square root of 4 x plus 5 end root minus x squared over denominator x squared minus 1 end fraction times fraction numerator square root of 4 x plus 5 end root plus x squared over denominator square root of 4 x plus 5 end root plus x squared end fraction
equals limit as x \rightwards arrow negative 1 of fraction numerator open parentheses square root of 4 x plus 5 end root close parentheses squared minus x to the power of 4 over denominator open parentheses x squared minus 1 close parentheses open parentheses square root of 4 x plus 5 end root plus x squared close parentheses end fraction equals limit as x \rightwards arrow negative 1 of fraction numerator 4 x plus 5 minus x to the power of 4 over denominator open parentheses x squared minus 1 close parentheses open parentheses square root of 4 x plus 5 end root plus x squared close parentheses end fraction

      następnie rozkładamy 4 x plus 5 minus x to the power of 4 korzystając ze schematu Hornera dla x equals negative 1 i dostajemy 4 x plus 5 minus x to the power of 4 equals \left parenthesis x plus 1 \right parenthesis \left parenthesis negative x cubed plus x squared minus x plus 5 \right parenthesis.

      Dalej

      table attributes columnalign \right center \left columnspacing 0px end attributes row cell limit as x \rightwards arrow negative 1 of fraction numerator square root of 4 x plus 5 end root minus x squared over denominator x squared minus 1 end fraction end cell equals cell horizontal ellipsis equals limit as x \rightwards arrow negative 1 of fraction numerator 4 x plus 5 minus x to the power of 4 over denominator open parentheses x squared minus 1 close parentheses open parentheses square root of 4 x plus 5 end root plus x squared close parentheses end fraction end cell row blank equals cell limit as x \rightwards arrow negative 1 of fraction numerator \left parenthesis x plus 1 \right parenthesis \left parenthesis negative x cubed plus x squared minus x plus 5 \right parenthesis over denominator open parentheses x minus 1 close parentheses open parentheses x plus 1 close parentheses open parentheses square root of 4 x plus 5 end root plus x squared close parentheses end fraction end cell row blank equals cell limit as x \rightwards arrow negative 1 of fraction numerator negative x cubed plus x squared minus x plus 5 over denominator open parentheses x minus 1 close parentheses open parentheses square root of 4 x plus 5 end root plus x squared close parentheses end fraction equals end cell row blank blank blank row blank equals cell fraction numerator 8 over denominator negative 2 times 2 end fraction equals negative 2 end cell end table

    1. Witam 

      Logarytm naturalny jest określony tylko dla x greater than 0. Granice można odczytać z wykresu funkcji y equals ln x

      Na wykresie widać, że jeżeli x dąży do nieskończoności to wykres ucieka do góry czyli limit as x \rightwards arrow plus infinity of ln x equals plus infinity; jeżeli natomiast x dąży do zera od prawej strony to wykres ucieka w dół czyli limit as x \rightwards arrow 0 to the power of plus of ln x equals negative infinity.

      Nie ma natomiast granicy w negative infinity z uwagi na dziedzinę logarytmu.

    2. Świetne wytłumaczenie, kula jest okrągła – bo koło jest okrągłe. Fajnie się argumentuje w tych ciemnych czasach historii… Pójdźmy dalej… Dlaczego masło smakuje masłem – bo jest maślane. Dziękuję za brawa – jestem tak zajebisty jak autor wpisu powyżej

  8. Pomóżcie proszę! Znalazłam w znanym zbiorze bardzo skomplikowane rozwiązanie granicy. Czy to naprawdę taki trudny przypadek?stack lim space x e to the power of 1 over x end exponent with x \rightwards arrow 0 plus below

    1. Nie, to niezbyt trudny przypadek. Należy skorzystać z reguły de Hospitala:

      limit as x \rightwards arrow 0 to the power of plus of x e to the power of 1 over x end exponent

      Na początku sprawdzamy, co do czego zmierza:

      open square brackets 0 to the power of plus times e to the power of 1 over 0 to the power of plus end exponent close square brackets equals open square brackets 0 to the power of plus times e to the power of plus infinity end exponent close square brackets equals open square brackets 0 times infinity close square brackets

      Mamy więc symbol nieoznaczony.

      Przekształcamy go do symbolu nieoznaczonego, w którym można zastosować regułę de Hospitala (pokazałem jak to się robi w Kursie Granic: https://etrapez.pl/produkt/kurs-granice/ ), stosujemy regułę, wszystko ładnie się upraszcza i mamy wynik:

      limit as x \rightwards arrow 0 to the power of plus of x e to the power of 1 over x end exponent equals limit as x \rightwards arrow 0 to the power of plus of fraction numerator e to the power of 1 over x end exponent over denominator \begin display style 1 over x end style end fraction equals from H to open square brackets infinity over infinity close square brackets of limit as x \rightwards arrow 0 to the power of plus of fraction numerator open parentheses e to the power of 1 over x end exponent close parentheses apostrophe over denominator \begin display style open parentheses 1 over x close parentheses apostrophe end style end fraction equals limit as x \rightwards arrow 0 to the power of plus of fraction numerator e to the power of 1 over x end exponent open parentheses 1 over x close parentheses apostrophe over denominator negative \begin display style 1 over x squared end style end fraction equals
equals limit as x \rightwards arrow 0 to the power of plus of fraction numerator e to the power of 1 over x end exponent open parentheses negative 1 over x squared close parentheses over denominator negative \begin display style 1 over x squared end style end fraction equals limit as x \rightwards arrow 0 to the power of plus of e to the power of 1 over x end exponent equals plus infinity

  9. Proszę pomóżcie:)Jak policzyć z d’H lim przy x dążącym do 0+ dla x*e^1/x. Wiem, że ma wyjść nieskończoność? Znalazłam, w Krysickim uzasadnienie, ale strasznie skomplikowane.  

    1. W rozwiązaniu wykorzystamy regułę De l’Hospitala oraz własności logarytmów tzn.

      a to the power of log subscript a x end exponent equals x \rightwards double arrow e to the power of ln x end exponent equals x
n times log subscript a x equals log subscript a x to the power of n

      Obliczymy granicę limit as x \rightwards arrow 0 to the power of plus of (wydaję mi się, że granica w 0 to the power of minus jest ciążka do policzenia i tym samym granica obustronna w 0; po obliczeniu jeszcze powrócę do tego problemu).

      Zaczynamy

      limit as x \rightwards arrow 0 to the power of plus of open parentheses t g x close parentheses to the power of t g x end exponent equals limit as x \rightwards arrow 0 to the power of plus of e to the power of ln open parentheses t g x close parentheses to the power of t g x end exponent end exponent equals limit as x \rightwards arrow 0 to the power of plus of e to the power of t g x ln open parentheses t g x close parentheses end exponent equals e to the power of limit as x \rightwards arrow 0 to the power of plus of t g x ln open parentheses t g x close parentheses end exponent

      Dalej

      table attributes columnalign \right center \left columnspacing 0px end attributes row cell limit as x \rightwards arrow 0 to the power of plus of t g x times ln open parentheses t g x close parentheses end cell equals cell open square brackets 0 to the power of plus times ln 0 to the power of plus equals 0 to the power of plus times open parentheses plus infinity close parentheses close square brackets equals limit as x \rightwards arrow 0 to the power of plus of fraction numerator ln open parentheses t g x close parentheses over denominator \begin display style bevelled fraction numerator 1 over denominator t g x end fraction end style end fraction equals limit as x \rightwards arrow 0 to the power of plus of fraction numerator ln open parentheses t g x close parentheses over denominator \begin display style c t g x end style end fraction end cell row blank equals cell open square brackets fraction numerator ln 0 to the power of plus over denominator plus infinity end fraction close square brackets equals open square brackets fraction numerator negative infinity over denominator plus infinity end fraction close square brackets to the power of H equals limit as x \rightwards arrow 0 to the power of plus of fraction numerator \begin display style fraction numerator 1 over denominator t g x end fraction fraction numerator 1 over denominator cos squared x end fraction end style over denominator \begin display style fraction numerator 1 over denominator sin squared x end fraction end style end fraction end cell row blank equals cell limit as x \rightwards arrow 0 to the power of plus of fraction numerator sin squared x over denominator t g x cos squared x end fraction equals limit as x \rightwards arrow 0 to the power of plus of fraction numerator sin squared x over denominator \begin display style fraction numerator sin x over denominator cos x end fraction cos squared x end style end fraction end cell row blank equals cell limit as x \rightwards arrow 0 to the power of plus of fraction numerator sin x over denominator cos x end fraction equals 0 over 1 equals 0 end cell end table

      Powracając do limit as x \rightwards arrow 0 to the power of plus of open parentheses t g x close parentheses to the power of t g x end exponent dostajemy

      limit as x \rightwards arrow 0 to the power of plus of open parentheses t g x close parentheses to the power of t g x end exponent equals space horizontal ellipsis space equals e to the power of limit as x \rightwards arrow 0 to the power of plus of t g x ln open parentheses t g x close parentheses end exponent equals e to the power of 0 equals 1.

      Granica w 0 to the power of minus tą metoda nie jest możliwa do policzenia ze względu na dziedzinę logarytmu naturalnego ln x semicolon space x greater than 0. Możemy liczyć tylko granicę prawostronną w zerze. Granica table attributes columnalign \right center \left columnspacing 0px end attributes row blank blank cell limit as x \rightwards arrow 0 minus of end cell end table table attributes columnalign \right center \left columnspacing 0px end attributes row blank blank ln end table table attributes columnalign \right center \left columnspacing 0px end attributes row blank blank cell open parentheses t g x close parentheses end cell end table table attributes columnalign \right center \left columnspacing 0px end attributes row blank equals blank end table table attributes columnalign \right center \left columnspacing 0px end attributes row blank blank cell open square brackets ln 0 to the power of minus close square brackets end cell end table table attributes columnalign \right center \left columnspacing 0px end attributes row blank equals blank end table table attributes columnalign \right center \left columnspacing 0px end attributes row blank blank cross times end table table attributes columnalign \right center \left columnspacing 0px end attributes row blank blank end table nie ma sensu.

  10. Obliczy mi ktoś ? męcze się z tym od dwóch dni .. ;( ( 5(n+1)!-2(n-1)!)/(3n!-(n+1)! n->oo    oraz lim –>4 (x+x^1/2-6)/(x-(5*x^1/2)-6) liczylam z d’Hospitala i wyszlo mi -5  a tutaj na kalkulatorze wychodzi 0

  11. Mam obliczyc granice zmierzajaca do zera tgx/x^3   –    sinx/x^3.  W kalkulatorze wychodzi 1/2 a mi zero . Zrobilam z metody de’l Hospitala poniewaz na poczatku wychodzi indeks [0/0] i dalej z pochodnych . Dlaczego wyniki sie roznia ?

  12. Nie mogę rozwiązać tej granicy ( (x^(x)*2^(x))/(x!) a x dąży do nieskończoności)  mam wskazówkę, że 0<(ax+1)/(ax)<1 ale wychodzi mi 2e, więc murze udowodnić innym sposobem.. ale nie mam pojęcia jakim.. 

  13. Dzień dobry! Mam taki kłopot z granicą . W przypadku gdy funkcja dąży do -oo a wygląda tak: lim =2^x to jakim cudem wychodzi że jest to równe zero? Czy liczba podniesiona do potęgi -oo zawsze będzie zerem? Proszę o pomoc. Serdecznie pozdrawiam. K.

    1. Witam!

      Jeśli chodzi o taką granicę, przy x dążącym do negative infinity zależy jaką liczbę podnosisz do potęgi, większą od 1 czy ułamek.

      Bo ten minus w potędze jaki się pojawi (po podstawieniu granicy) – zamienia podstawę na odwrotną, to znaczy wykorzystuje się zależność potęg a to the power of negative x end exponent equals open parentheses 1 over a close parentheses to the power of x

      Stąd w takich granicach, jeśli liczba podniesiona do potęgi negative infinity  jest większa od 1, zamieni się na ułamek podnoszony do potęgi infinity , a to zawsze będzie zerem 🙂

      limit as x \rightwards arrow negative infinity of 2 to the power of x equals open square brackets 2 to the power of negative infinity end exponent equals open parentheses 1 half close parentheses to the power of infinity close square brackets equals 0

      Wynik wziął się z wzoru limit as x \rightwards arrow infinity of a to the power of x equals 0 space space space comma space g d z i e space open vertical bar a close vertical bar space less than 1

  14. Cześć . Ucze się do wrześniowego egzaminu i mam problem z jedym przykładem , za każdym razem wychodzi mi cos innego . Proszę o pomoc jak go rozwiązać po kolei bo coś na pewno robie źle .
    (1+3/x)^-x przy x-> oo

    1. Joanna Grochowska

      \underset{{x to \infty }}{\mathop{{lim }}}\frac{{{{{(2x+1)}}^{4}}-{{{(2x+3)}}^{4}}}}{{{{{(x+3)}}^{3}}-{{{(3x-1)}}^{3}}}}

      Rozpisuję podane wyrażenia. O ile w mianowniku można by zastosować wzory skróconego mnożenia, poznane jeszcze w szkole w średniej, to w liczniku nie koniecznie znamy/ pamiętamy od razu gotowy wzór.

      Wykorzystuje więc wzór ogólny na n-tą potęgę sumy dwóch liczb (do doboru współczynników pomocny jest również tzw. Trójkąt Pascala)

      Stąd
      \displaystyle {{(a+b)}^{4}}={{a}^{4}}+4{{a}^{3}}b+6{{a}^{2}}{{b}^{2}}+4a{{b}^{3}}+{{b}^{4}}
      \displaystyle {{(a+b)}^{3}}={{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}
      \displaystyle {{(a-b)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}

      No to rozpisując mam:

      \displaystyle \underset{{x\to \infty }}{\mathop{{lim }}}\frac{{{{{(2x+1)}}^{4}}-{{{(2x+3)}}^{4}}}}{{{{{(x+3)}}^{3}}-{{{(3x-1)}}^{3}}}}=

      \displaystyle \underset{{x\to \infty }}{\mathop{{lim }}}\frac{{16{{x}^{4}}+4\cdot 8{{x}^{3}}+6\cdot 4{{x}^{2}}+4\cdot 2x+1-(16{{x}^{4}}+4\cdot 8{{x}^{3}}\cdot 3+6\cdot 4{{x}^{2}}\cdot 9+4\cdot 2x\cdot 27+81)}}{{{{x}^{3}}+3\cdot {{x}^{2}}\cdot 3+3\cdot x\cdot 9+27-(27{{x}^{3}}-3\cdot 9{{x}^{2}}+3\cdot 3x-1)}}

      \displaystyle =\underset{{x\to \infty }}{\mathop{{lim }}}\frac{{16{{x}^{4}}+32{{x}^{3}}+24{{x}^{2}}+8x+1-16{{x}^{4}}-96{{x}^{3}}-216{{x}^{2}}-216x-81}}{{{{x}^{3}}+9{{x}^{2}}+27x+27-27{{x}^{3}}+27{{x}^{2}}-9x+1}}=

      \displaystyle =\underset{{x\to \infty }}{\mathop{{lim }}}\frac{{-64{{x}^{3}}-192{{x}^{2}}-208x-80}}{{-26{{x}^{3}}+36{{x}^{2}}+18x+28}}=\underset{{x\to \infty }}{\mathop{{lim }}}\frac{{{{x}^{3}}\cdot \left( {-64-\frac{{192}}{x}-\frac{{208}}{{{{x}^{2}}}}-\frac{{80}}{{{{x}^{3}}}}} \right)}}{{{{x}^{3}}\cdot \left( {-26+\frac{{36}}{x}+\frac{{18}}{{{{x}^{2}}}}+\frac{{28}}{{{{x}^{3}}}}} \right)}}=

      \displaystyle \underset{{x\to \infty }}{\mathop{{lim }}}\frac{{\left( {-64-\frac{{192}}{x}-\frac{{208}}{{{{x}^{2}}}}-\frac{{80}}{{{{x}^{3}}}}} \right)}}{{\left( {-26+\frac{{36}}{x}+\frac{{18}}{{{{x}^{2}}}}+\frac{{28}}{{{{x}^{3}}}}} \right)}}=\left[ {\frac{{-64-0-0-0}}{{-26+0+0+0}}} \right]=\frac{{32}}{{13}}

    1. Joanna Grochowska

      Podstawiając wartość \displaystyle \infty za x mam granicę \displaystyle \left[ {\frac{\infty }{\infty }} \right], dlatego też stosuję regułę de l’Hospitala.

      \displaystyle \begin{matrix}\underset{{x\to \infty }}{\mathop{{lim }}}\frac{{{{x}^{2}}}}{{{{e}^{x}}}}=\left[ {\frac{\infty }{\infty }} \right]\overset{H}{\mathop{=}}\underset{{x\to \infty }}{\mathop{{lim }}}\frac{{\left( {{{x}^{2}}} \right)'}}{{\left( {{{e}^{x}}} \right)'}}=\underset{{x\to \infty }}{\mathop{{lim }}}\frac{{2x}}{{{{e}^{x}}}}=\left[ {\frac{\infty }{\infty }} \right]\overset{H}{\mathop{=}}\underset{{x\to \infty }}{\mathop{{lim }}}\frac{{\left( {2x} \right)'}}{{\left( {{{e}^{x}}} \right)'}}=\underset{{x\to \infty }}{\mathop{{lim }}}\frac{2}{{{{e}^{x}}}}=\left[ {\frac{2}{\infty }} \right]=0\end{matrix}

      Wynik końcowy powstał wprost z zastosowania wzoru na granicę:

      \displaystyle \left[ {\frac{A}{{\pm \infty }}} \right]=0

    1. Joanna Grochowska

      \displaystyle \underset{{n\to \infty }}{\mathop{{lim }}}{{\left( {1+\frac{4}{n}} \right)}^{{n-1}}}

      Wykorzystać chcę tu wzór:
      \displaystyle \underset{{n\to \infty }}{\mathop{{lim }}}{{\left( {1+\frac{a}{\square }} \right)}^{\square }}={{e}^{a}}

      Dlatego przekształcam:
      \displaystyle \underset{{n\to \infty }}{\mathop{{lim }}}{{\left( {1+\frac{4}{n}} \right)}^{{n-1}}}=\underset{{n\to \infty }}{\mathop{{lim }}}{{\left[ {{{{\left( {1+\frac{4}{n}} \right)}}^{n}}} \right]}^{{\frac{{n-1}}{n}}}}

      Wyrażenie w nawiasie kwadratowym dąży do \displaystyle {{e}^{4}}.

      Na boku rozpisuję granicę potęgi
      \displaystyle \underset{{n\to \infty }}{\mathop{{lim }}}\frac{{n-1}}{n}=\underset{{n\to \infty }}{\mathop{{lim }}}\frac{{n\left( {1-\frac{1}{n}} \right)}}{n}=\underset{{n\to \infty }}{\mathop{{lim }}}\left( {1-\frac{1}{n}} \right)=1-0=1

      Mam więc ostatecznie:
      \displaystyle \underset{{n\to \infty }}{\mathop{{lim }}}{{\left[ {{{{\left( {1+\frac{4}{n}} \right)}}^{n}}} \right]}^{{\frac{{n-1}}{n}}}}={{\left[ {{{e}^{4}}} \right]}^{1}}={{e}^{4}}

  15. wprowadziłam dla sprawdzenia granicę (x^2-9)/(x^2-3x) przy x dążącym do 3 mi wychodzi 0 natomiast tu pojawia się 2, dlaczego?

    1. w tej granicy, jak się tego nie poprzekształca wychodzi na końcu 0/0. Trzeba policzyć pochodne z tych funkcji i dopiero liczyć granicę, czyli 2x/(2x-3).

    2. limit as x \rightwards arrow 3 of fraction numerator x squared minus 9 over denominator x squared minus 3 x end fraction

      Rozwiązanie:

      Po sprawdzeniu. że mamy wyraz typu 0 over 0, licznik rozkładamy na mnożniki wg wzoru mnożenia skroconego a squared minus b squared equals open parentheses a minus b close parentheses open parentheses a plus b close parentheses, w mianowniku wynosimy x za nawiasy, potem ułamek skracamy i podstawiamy x equals 3 ponownie:

      limit as x \rightwards arrow 3 of fraction numerator x squared minus 9 over denominator x squared minus 3 x end fraction equals open square brackets 0 over 0 close square brackets equals limit as x \rightwards arrow 3 of fraction numerator open parentheses x minus 3 close parentheses open parentheses x plus 3 close parentheses over denominator x open parentheses x minus 3 close parentheses end fraction equals limit as x \rightwards arrow 3 of fraction numerator x plus 3 over denominator x end fraction equals fraction numerator 3 plus 3 over denominator 3 end fraction equals 6 over 3 equals 2

  16. Przydatna sprawa 🙂 Jednak nie mogę rozwiązać jednej granicy:
    (e^(2x)-1)/ln(1+2x). Wiem, że powinno wyjść 1 (mi wychodzi 0), ale nie mam pojęcia skąd. Mógłbyś mi to wytłumaczyć ?

    1. Joanna Grochowska

      Rozumiem, że chodzi o granicę funkcji dla x dążącego do zera tak? 😉

      http://www.wolframalpha.com/input/?i=lim+(e%5E(2x)-1)%2Fln(1%2B2x)

      A zatem po podstawieniu w granicy \displaystyle \underset{{x\to 0}}{\mathop{{lim }}}\frac{{{{e}^{{2x}}}-1}}{{ln(1+2x)}} wartości zero za „x” mam:

      \displaystyle \left[ {\frac{{{{e}^{0}}-1}}{{ln (1+0)}}=\frac{{1-1}}{{ln 1}}=\frac{0}{0}} \right]

      Jest to symbol nieoznaczony, dlatego najlepiej jest tu zastosować regułę de l’Hospitala:

      \displaystyle \underset{{x\to 0}}{\mathop{{lim }}}\frac{{{{e}^{{2x}}}-1}}{{ln(1+2x)}}=\left[ {\frac{0}{0}} \right]\overset{H}{\mathop{=}}\underset{{x\to 0}}{\mathop{{lim }}}\frac{{\left( {{{e}^{{2x}}}-1} \right)'}}{{\left( {ln(1+2x)} \right)'}}=\underset{{x\to 0}}{\mathop{{lim }}}\frac{{{{e}^{{2x}}}\cdot 2-0}}{{\frac{1}{{1+2x}}\cdot 2}}=

      \displaystyle \underset{{x\to 0}}{\mathop{{lim }}}{{e}^{{2x}}}\cdot (1+2x)=\left[ {{{e}^{{2\cdot 0}}}\cdot (1+2\cdot 0)=1\cdot (1+0)} \right]=1

Leave a Reply

Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *

Twój komentarz będzie dostępny publicznie na naszej stronie razem z powyższym podpisem. Komentarz możesz zmienić, lub usunąć w każdej chwili. Administratorem danych osobowych podanych w tym formularzu jest eTrapez Usługi Edukacyjne E-Learning Krystian Karczyński. Zasady przetwarzania danych oraz Twoje uprawnienia z tym związane opisane są w Polityce Prywatności.