حدود المتتالية بمجموع المربعات أو مجموع المكعبات

في حدود المتتاليات، أحيانًا تكون هكذا:

حد المتتالية مع مجموع المربعات في البسط

وأحيانًا تكون هكذا:

ماذا نفعل حينها؟

الجواب بسيط:

الصيغ لمجموع المربعات ومجموع المكعبات للأعداد الطبيعية المتتالية.

الصيغ كانت كالتالي:

الصيغ – كأي صيغ – لحفظها عن ظهر قلب. إذا كنت قد واجهت أمثلة مماثلة وتحتاجها بالفعل.

بمعرفة هذه الصيغ يصبح حساب الحدود الخاصة بنا سهلاً للغاية:

الحد التالي:

البراهين الاستقرائية للصيغ

يمكن إثبات صحة الصيغ بسهولة نسبية باستخدام الاستقراء (على الأقل قبل بضع سنوات كان هذا معيارًا في المدرسة الثانوية). سأقوم بذلك للصيغة التالية:

1.

الخطوة الاستقرائية الأولى

نتحقق من صحة الصيغة عندما n=1:

صحيح

الخطوة الاستقرائية الثانية

نفترض الفرضية، أنه بالنسبة لعدد طبيعي معين n:

الخطوة الاستقرائية الثالثة

نثبت النظرية (باستخدام الفرضية المفترضة) أنه بالنسبة ل n+1 فإن الصيغة تنطبق أيضًا، أي:

على الجانب الأيسر بدلاً من نضع الصيغة من الفرضية، وعلى الجانب الأيمن نقوم بالترتيب فقط:

ثم بدلاً من العمل بشكل متعجل نتصرف بدقة أكبر:

أي أن النظرية قد ثبتت. الصيغة قد ثبتت بالاستقراء.

أدعوكم لإثبات الصيغة الثانية بالاستقراء، لمجموع المكعبات:

Krystian Karczyński

Założyciel i szef serwisu eTrapez.

Magister matematyki Politechniki Poznańskiej. Korepetytor matematyki z wieloletnim stażem. Twórca pierwszych Kursów eTrapez, które zdobyły ogromną popularność wśród studentów w całej Polsce.

Mieszka w Szczecinie. Lubi spacery po lesie, plażowanie i kajaki.

Leave a Reply

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *

سيكون تعليقك متاحًا للعامة على موقعنا مع التوقيع أعلاه. يمكنك تغيير تعليقك أو حذفه في أي وقت. مسؤول البيانات الشخصية المقدمة في هذا النموذج هو eTrapez Usługi Edukacyjne E-Learning Krystian Karczyński. يتم وصف قواعد معالجة البيانات وحقوقك المتعلقة بها في سياسة الخصوصية.