证明当 x 趋向于无穷大时 sin(x) 不达到极限

我们有一个函数的极限:

直观上我们感觉上面的极限是不存在的。x 变得越来越大,而正弦值一直在 -1 和 1 之间“摆动”。

正式证明

但如何正式地展示并证明这一点呢?

根据定义当 x 趋向无穷大时的函数极限,我们知道极限存在,如果对于 每一个趋向 的自变量序列,对应的函数值序列都收敛于同一个数(那么这个数就是极限)。

所以为了展示这样的极限不存在,只需取两个任意趋向 的自变量序列,并展示对应的函数值序列收敛于两个不同的数。

我们知道正弦函数是周期性的,因此可以取如下序列:

显然,当 时,这两个序列都趋向于无穷大。

现在我们来看这些序列对应的函数值序列

显然,第一个序列收敛于 0,第二个序列收敛于 1。

这足以证明函数的极限:

不存在。

Krystian Karczyński

Założyciel i szef serwisu eTrapez.

Magister matematyki Politechniki Poznańskiej. Korepetytor matematyki z wieloletnim stażem. Twórca pierwszych Kursów eTrapez, które zdobyły ogromną popularność wśród studentów w całej Polsce.

Mieszka w Szczecinie. Lubi spacery po lesie, plażowanie i kajaki.

Leave a Reply

您的邮箱地址不会被公开。 必填项已用 * 标注

您的评论将与上述签名一起公开显示在我们的网站上。您可以随时更改或删除您的评论。此表格中提供的个人数据的管理员是eTrapez Usługi Edukacyjne E-Learning Krystian Karczyński。数据处理规则及相关权利在隐私政策中有描述。