Wykorzystaj Podobieństwa Między Całkami a Szeregami

Całka niewłaściwa i szeregCałkowanie a liczenie szeregów – tak różne, a tak podobne

Obliczanie całki oznaczonej (no i niewłaściwej także) to – jak możesz sprawdzić wgłębiając się trochę w definicję tej całki – właściwie obliczanie pewnego szeregu.

Same całkowanie właściwie to tak naprawdę sumowanie, tyle, że wielkości nieskończenie małych. A suma to przecież szereg.

Trudno więc, żeby pomiędzy całką \int\limits_{a}^{\infty }{f\left( x \right)dx}, a szeregiem \sum\limits_{n=a}^{\infty }{{{a}_{n}}} nie było wielu analogii.

Kryterium całkowe zbieżności szeregów (mając do określenie zbieżność szeregu liczymy odpowiadającą mu całkę i sprawdzamy jej zbieżność) już znasz. Jest to jednak tylko jeden element z dłuższej listy analogii i podobieństw.

Dzięki nim określisz w wielu przypadkach zbieżność (lub nie) całki niewłaściwej, bez konieczności obliczania jej od deski do deski. Ułatwia to sprawę, a czasami nawet nie ułatwia, ale w ogóle umożliwia – bo jak już wiesz liczenie całek to często sprawa bardzo trudna.

W tym poście opiszę 4 kryteria zbieżności, które znasz (no przynajmniej jedno na pewno znasz) z szeregów, w zupełnie identyczny sposób zastosowane do całek.

  1. Kryterium porównawcze

Tak, tak, to nasz stary dobry znajomy z szeregów. Znany i popularny, choć nie bardzo lubiany przez studentów za brak sztywno określonego schematu postępowania.

Przypomnę: chodziło tam o to, że szukałem ciągów ograniczających wyraz szeregu od dołu lub od góry (w zależności, czy wykazywałem zbieżność, czy rozbieżność) i takich, żeby szeregi z tych ciągów były rozbieżne lub zbieżne (znowu w zależności od tego, co chciałem pokazać).

Wszystko to pokazałem w moim Kursie Szeregów.

No i spójrz teraz na kryterium porównawcze całek niewłaściwych:

Kryterium porównawcze zbieżności całek niewłaściwych

  • Jeśli funkcja f\left( x \right) jest funkcją dodatnią od pewnego x (dla x\ge {{x}_{0}}, gdzie {{x}_{0}} oznacza jakąś stałą) i dla tych x zachodzi nierówność f\left( x \right)\le g\left( x \right), to ze zbieżności całki \int\limits_{{{x}_{0}}}^{\infty }{g\left( x \right)dx} wynika zbieżność całki \int\limits_{{{x}_{0}}}^{\infty }{f\left( x \right)dx}
  • Jeśli funkcja f\left( x \right) jest funkcją dodatnią od pewnego x (dla x\ge {{x}_{0}}, gdzie {{x}_{0}} oznacza jakąś stałą) i dla tych x zachodzi nierówność f\left( x \right)\ge g\left( x \right), to z rozbieżności całki \int\limits_{{{x}_{0}}}^{\infty }{g\left( x \right)dx} wynika rozbieżność całki \int\limits_{{{x}_{0}}}^{\infty }{f\left( x \right)dx}

Jest to właściwie zdublowane kryterium w stosunku do tego z szeregów, a i metoda postępowania taka sama.

Przykład 1

Zbadaj zbieżność całki \int\limits_{1}^{\infty }{\frac{1}{{{x}^{2}}+x}dx}

Alternatywą do męczącego obliczania wprost tej całki i sprawdzaniu na końcu, czy wyjdzie stała, czy nieskończoność (pokazałem jak to się robi w moim Kursie z całkami niewłaściwymi) jest zastosowanie kryterium porównawczego.

Zupełnie analogicznie, jak w szeregach patrząc na funkcję podcałkową orientuję się, że będę szacował zbieżność, szukam więc jej oszacowania z góry:

\frac{1}{{{x}^{2}}+x}\le

Zmniejszając mianownik zwiększę całe wyrażenie, czyli:

\frac{1}{{{x}^{2}}+x}\le \frac{1}{{{x}^{2}}} – oczywiście dla x>1, a tylko takie bierzemy pod uwagę patrząc na granice całkowania

Całka \int\limits_{1}^{\infty }{\frac{1}{{{x}^{2}}}dx} jest oczywiście zbieżna, możemy to pokazać Panu Profesorowi obliczając ją w kilku ruchach (to już będzie elementarna, a nie wymierna) – jeśli w ogóle tego wymaga.

Czyli – na mocy kryterium porównawczego całek niewłaściwych – całka \int\limits_{1}^{\infty }{\frac{1}{{{x}^{2}}+x}dx} jest zbieżna.

 

Kolejne kryterium opisałem w moim poście parę dni temu, jako kryterium do szeregów. Świetnie jednak sprawdza się również dla całek niewłaściwych:

2. Kryterium ilorazowe

Kryterium ilorazowe zbieżności całek niewłaściwych

Jeśli mam dwie całki \int\limits_{{{x}_{0}}}^{\infty }{f\left( x \right)dx} i \int\limits_{{{x}_{0}}}^{\infty }{g\left( x \right)dx}, oraz istnieje granica:

\underset{x\to \infty }{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}

wtedy jeżeli:

  • 0<\underset{x\to \infty }{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}<\infty – obie całki są równocześnie albo zbieżne, albo rozbieżne
  • \underset{x\to \infty }{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=0 – ze zbieżności całki \int\limits_{{{x}_{0}}}^{\infty }{g\left( x \right)dx} wynika zbieżność całki \int\limits_{{{x}_{0}}}^{\infty }{f\left( x \right)dx}
  • \underset{x\to \infty }{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\infty  – z rozbieżności całki \int\limits_{{{x}_{0}}}^{\infty }{g\left( x \right)dx} wynika rozbieżność całki \int\limits_{{{x}_{0}}}^{\infty }{f\left( x \right)dx}

 

Przykład 2

Zbadaj zbieżność całki \int\limits_{2}^{\infty }{\frac{x+3}{{{x}^{3}}+\sqrt{x}-1}dx}

Tutaj motanie się z liczeniem tej całki było by już zupełnie przykre (chociaż możliwe). Podejdźmy ją elegancko dobranym kryterium ilorazowym.

Mamy funkcję \frac{x+3}{{{x}^{3}}+\sqrt{x}-1}, trzeba ją podzielić przez odpowiednią funkcję. Największa potęga w liczniku to x, a w mianowniku x^3. Dzielę więc przez funkcję \frac{x}{{{x}^{3}}} i zobacz, jak fajnie uprości to nam temat:

\underset{x\to \infty }{\mathop{\lim }}\,\frac{\frac{x+3}{{{x}^{3}}+\sqrt{x}-1}}{\frac{x}{{{x}^{3}}}}=\underset{x\to \infty }{\mathop{\lim }}\,\frac{x+3}{{{x}^{3}}+\sqrt{x}-1}\cdot \frac{{{x}^{3}}}{x}=\underset{x\to \infty }{\mathop{\lim }}\,\frac{x+3}{x}\cdot \frac{{{x}^{3}}}{{{x}^{3}}+\sqrt{x}-1}=\underset{x\to \infty }{\mathop{\lim }}\,\left( 1+\frac{3}{x} \right)\cdot \frac{{{x}^{3}}}{{{x}^{3}}\left( 1+\frac{\sqrt{x}}{{{x}^{3}}}-\frac{1}{{{x}^{3}}} \right)}=1

Czyli nasza granica z kryterium ilorazowego wyszła równa 1, zatem obie całki \int\limits_{2}^{\infty }{\frac{x+3}{{{x}^{3}}+\sqrt{x}-1}dx}\int\limits_{2}^{\infty }{\frac{x}{{{x}^{3}}}dx} są albo równocześnie zbieżne, albo równocześnie rozbieżne.

A tak się oczywiście składa, że całka \int\limits_{2}^{\infty }{\frac{x}{{{x}^{3}}}dx}=\int\limits_{2}^{\infty }{\frac{1}{{{x}^{2}}}dx} jest zbieżna (co można znowu pokazać obliczając ją w kilku ruchach).

Zatem na mocy kryterium ilorazowego zbieżności całek niewłaściwych całka \int\limits_{2}^{\infty }{\frac{x+3}{{{x}^{3}}+\sqrt{x}-1}dx} jest zbieżna.

Uwaga!

Uważnie prześledź ten myk w tym przykładzie, jest on często dobierany przez profesorów. Nieznajomość jego oznacza Twoją śmierć na kolokwium (no chyba, że oszacujesz porównawczym, oczywiście), bo nie chodzi o to, żebyś całkę LICZYŁ, tak jak w standardowych przypadkach.

Funkcję podcałkową dzielisz przez największe potęgi w liczniku i mianowniku, a jak są pod pierwiastkiem, to też pod pierwiastkiem. Na przykład, żeby policzyć całkę \int\limits_{2}^{\infty }{\frac{\sqrt[3]{x}}{\sqrt{{{x}^{3}}-7}}dx} utworzyłbyś granicę: \underset{x\to \infty }{\mathop{\lim }}\,\frac{\frac{\sqrt[3]{x}}{\sqrt{{{x}^{3}}-7}}}{\frac{\sqrt[3]{x}}{\sqrt{{{x}^{3}}}}}

 

Kolejne kryteria nie wymagają tego, żeby funkcja podcałkowa była dodatnia. Ich odpowiedniki w szeregach wprowadziłem w ostatnim poście na blogu.

3. Kryterium Abela

Kryterium Abela zbieżności całek niewłaściwych

Jeśli funkcje f\left( x \right) i g\left( x \right) są określone w przedziale <a,\infty ), całka \int\limits_{a}^{\infty }{f\left( x \right)dx} jest zbieżna w tym przedziale, a funkcja g\left( x \right) jest monotoniczna i ograniczona w tym przedziale, wtedy całka:

\int\limits_{a}^{\infty }{f\left( x \right)g\left( x \right)dx}

jest zbieżna.

4. Kryterium Dirichleta

Kryterium Dirichleta zbieżności całek niewłaściwych

Jeżeli:

  • funkcja f\left( x \right) jest całkowalna w każdym przedziale \left\langle a,A \right\rangle dla A>a i całka \int\limits_{a}^{A}{f\left( x \right)dx} jest w nim ograniczona
  • funkcja g\left( x \right) jest monotoniczna i zbieżna do zera, gdy x\to \infty

wtedy:
\int\limits_{a}^{\infty }{f\left( x \right)g\left( x \right)dx}
jest zbieżna.

Przykład 3

Zbadaj zbieżność całki \int\limits_{1}^{\infty }{\frac{\sin x}{\sqrt{x}}dx}

Jeśli ktoś chciałby liczyć tą całkę, to oczywiście powodzenia, ale o wiele lepiej przedstawić ją jako:

\int\limits_{1}^{\infty }{\frac{1}{\sqrt{x}}\sin xdx}

Podchodzimy do kryterium Dirichleta, czyli pokazujemy, że całka \int\limits_{a}^{A}{\sin xdx} jest całkowalna i ograniczona – po prostu ją licząc:

\int\limits_{a}^{A}{\sin xdx}=\ldots

\int{\sin xdx}=-\cos x+C

\ldots =\left. \left[ -\cos x \right] \right|_{a}^{A}

\ldots =\left. \left[ -\cos x \right] \right|_{a}^{A}=-\cos A-\left( -\cos a \right)=\cos a-\cos A

Czyli funkcja \sin x jest całkowalna i ograniczona też, bo \cos a i \cos A nigdy nie „przekroczą” wartości -1 i 1, czyli na pewno:

-2\le \cos a-\cos A\le 2

Dalej funkcja \frac{1}{\sqrt{x}} jest monotoniczna (malejąca) i \underset{x\to \infty }{\mathop{\lim }}\,\frac{1}{\sqrt{x}}=0.

Czyli założenia kryterium Dirichleta są spełnione. Zatem:

Na mocy kryterium Dirichleta całka \int\limits_{1}^{\infty }{\frac{\sin x}{\sqrt{x}}dx} jest zbieżna.

 

Ułatwia to wszystko pewne sprawy, prawda? :)

Poznaj podstawy edukacji matematycznej na studiach

Dołącz do ponad 16000 studentów na Akademii eTrapez

Oto, co czeka na Ciebie:

  • 15 darmowych Lekcji (video + zadanie domowe)
  • 10 internetowych kalkulatorów
Załóż darmowe konto na Akademii eTrapez
O Krystian Karczyński

Nazywam się Krystian Karczyński, od kilkunastu lat pomagam studentom w matematyce.

Nowe technologie związane z Internetem pozwalają uczyć szybciej, bardziej ciekawie i skutecznie, co pokazuję na swojej Akademii eTrapez i na blogu.

Komentarze

  1. Przemysław Łabędź napisał:

    Witam i przepraszam że tu zamieszczam ten post.
    Jakieś 3 miesiące temu kolega kupił od pana 2 kursy całek wielokrotnych. I on już miał kolokwium a ja mam w sobotę i mam do pana proźbę o rozwiązanie lub nakierowanie w rozwiązaniu zadania bo u pana w kursie nie było jak rozwiązać takie zadanie:
    Oblicz pole części powierzchni paraboloidy z=4-(x do kwadratu + y do kwadratu) wyciętej przez powierzchnie z=1, z=2. Chodzi o to że mam problem z wyznaczeniem obszaru całkowania jak wogóle wyznaczyć z niego do dalszej części zadania „x” i „y”. Rysunek narysowałem pana sposobem i jest czytelny i wyznaczyłem obszar całkowania ale nie wiem jak jest ograniczony chodzi o x i y.
    Jak by pan mógł jak najszybciej mi pomóc.
    Z góry dziękuje.

    • Piotr Michalak napisał:

      Witam
      Wiem, że komentarz dodany „troszkę” za późno ale z okazji sesji i mojego egzaminu z Analizy Matematycznej III za 6 godzin chciałbym zrobić coś związanego z tematem i nakierować na rozwiązanie tego zadania osoby, które tak jak ja będą szukać odpowiedzi na jest stronie.
      Wstęp: Niemalże każde zadanie jest projektowane tak żeby było możliwe do rozwiązania metodami poznanymi przez na na ćwiczeniach oraz wykładach. Należy więc doszukiwać się jawnych wskazówek
      Krok 1 wskazówki: Pole powierzchni płata S jest równe Całce po tym płacie z funkcji tożsamościowo równej 1. zdanie :Oblicz pole części powierzchni paraboloidy z=4-(x^2 + y^2) to jest swoiste: „Mój drogi Studencie teraz podaję Ci wzór funkcji (opis płata S)
      A podanie warunków jakimi powierzchniami tniemy naszą paraboloidę jest wskazówką : „Mój drogi Studencie teraz podaję Ci jak będzie wyglądał rzut płata S na płaszczyznę OXY”
      Krok 2 Korzystając z narzędzi jakie dostaliśmy w ręce od naszych Prowadzących i Wykładowców możemy teraz obliczyć taką całkę. Jak? Pierwszym pomysłem jaki przychodzi mi do głowy i zdaje się być najprostszy jest sprowadzenie tej całki do całki podwójnej. Wyznaczamy rzut płata S (podstawiając kolejno wartości z=1 i z=2 do równania z=4-(x^2+y^2) po chwili zastanowienia widać, że będzie to pierścień. Czyli całka sprowadza się do obliczenia całki podwójnej po pierścieniu z funkcji która prezentuje długość wektora normalnego do naszej powierzchni (po to została nam podana funkcja z=4-(x^2+y^2).
      Krok 3. Obliczenie powyższej całki najlepiej zrobic poprzez podstawienie trygonometryczne ale to już inna bajka, którą na pewno znajdziecie w internecie i najpewniej w kursie Pana Krystiana Karczyńskiego.

      PM

  2. Michał napisał:

    Brawo Krystian, swietna robota zarowno merytorycznie, jak i pod wzgledem prezentacji informacji, czytelnie i rzetelnie.

    Pozdrawiam.

  3. Magda napisał:

    Dziękuję Krystian, w końcu zrozumiałam to nieszczęsne kryterium! Szybko, łatwo i zwięźle!

Skomentuj, zapraszam