Zakazane Wzory Na Całki Nieoznaczone

Znak zakazuProfesorzy na uczelniach mają swoje wymagania. Wielu z nich – dla dobra swoich studentów oczywiście – nie cofnie się przed bardzo szczegółowym określeniem reguł, na jakich mają być rozwiązywane zadania.

Użytkownik mojego Kursu Całek Nieoznaczonych napisał mi na GG tak:

mam prośbę, czy mógłby Pan na swoim FB lub blogu pokazać jak całki w Pana wzorach są doprowadzane do postaci z kartki ? Chodzi mi o wzory nr: 5,9,10,13,14,15,16. Niestety u nas Pani Profesor oznajmiła nam, że tylko te najprostsze mozna wykorzystywać, te bardziej złożone, które wymieniłem trzeba samemu rozbić do podanej postaci. Myślę, że dużo osób byłoby Panu za to wdzięcznych 🙂

Chodzi o kartkę z wzorami dołączoną do Kursu:

Wzory na całki nieoznaczone

 

A konkretnie o wzory:

5.\quad \int{{{a}^{x}}dx=\frac{{{a}^{x}}}{\ln a}+C}

9.\quad \int{tgxdx=-\ln \left| \cos x \right|+C}

10.\quad \int{ctgxdx=\ln \left| \sin x \right|}+C

13.\quad \int{\frac{dx}{{{x}^{2}}+{{a}^{2}}}=\frac{1}{a}arctg\frac{x}{a}+C}

14.\quad \int{\frac{dx}{{{x}^{2}}-{{a}^{2}}}=\frac{1}{2a}\ln \left| \frac{x-a}{x+a} \right|+C}

15.\quad \int{\frac{dx}{\sqrt{{{a}^{2}}-{{x}^{2}}}}=\arcsin \frac{x}{a}+C}

16.\quad \int{\frac{dx}{\sqrt{{{x}^{2}}+q}}=\ln \left| x+\sqrt{{{x}^{2}}+q} \right|+C}

 

Jak nie tymi, to innymi

Ano tak, to prawda, profesorzy często wymagają, żeby stosować te, a nie inne wzory. Albo żeby nie stosować w ogóle niektórych. Albo żeby stosować te, których nie lubimy stosować.

Jedynym wyjściem dla rozsądnego człowieka oczywiście jest w takich sytuacjach całkowite podporządkowanie się. Na sali egzaminacyjnej wykładowca jest prawem i nie ma sensu wyżalać się później znajomym, że profesor nie zaliczył kolokwium, chociaż „powinien”.

Zamiast tego przyjrzę się wymienionym wzorom punkt po punkcie i pokażę jak sobie radzić w każdym przypadku indywidualnie (niestety nie da się ich „objąć” jakąś wspólną regułą). „Radzić”, to znaczy rozwiązywać całki wymagające użycia tego wzoru bez użycia tego wzoru – za to z użyciem wzoru mniej ogólnego, albo wyprowadzenia całki przez podstawienie, czy wymiernej.

No to po kolei:

 

 

5.\quad \int{{{a}^{x}}dx=\frac{{{a}^{x}}}{\ln a}+C}

Z tym wzorem to właściwie nie wiem, o co chodzi, wynika on przecież wprost z odwrócenia wzoru na pochodną:
{{\left( {{a}^{x}} \right)}^{\prime }}={{a}^{x}}\ln a

Tutaj więc nie okazuję całkowitej uległości profesorowi, tylko proszę o wyjaśnienie, jak mam kurka policzyć \int{{{3}^{x}}dx} nie korzystając z wzoru na \int{{{a}^{x}}dx}.

Jak ktoś wpadnie na jakiś ciekawy pomysł, błagam, żeby podzielił się nim z ludzkością w komentarzach pod postem.

 

 

9.\quad \int{tgxdx=-\ln \left| \cos x \right|+C}

Dobra, wracamy do gry.

Ten wzór nie wynika bezpośrednio z odwrócenia żadnego wzoru na pochodną.

Jeżeli umawiamy się, że go nie znamy, całkę \int{tgxdx} możemy policzyć przez podstawienie:

 

Całka z tgx

 

 

10.\quad \int{ctgxdx=\ln \left| \sin x \right|}+C

Tutaj analogicznie do poprzedniej:

Całka z ctgx

 

 

13.\quad \int{\frac{dx}{{{x}^{2}}+{{a}^{2}}}=\frac{1}{a}arctg\frac{x}{a}+C}

Ten wzór to postać ogólna wzoru:

\int{\frac{dx}{{{x}^{2}}+1}=arctgx+C} lub: \int{\frac{dx}{1+{{x}^{2}}}=arctgx+C}

Panu profesorowi chodzi o to, żeby skorzystać z wzoru: \int{\frac{dx}{{{x}^{2}}+1}=arctgx+C} (wynikającego z prostego odwrócenia wzoru na pochodną), a nie korzystać z wzoru: \int{\frac{dx}{{{x}^{2}}+{{a}^{2}}}=\frac{1}{a}arctg\frac{x}{a}+C} (który jest już wzorem w postaci „przetworzonej”).

Robimy to w następujący sposób (przez przekształcenie i podstawienie):

Przekształcenie ogólnego wzoru na całkę z arctgx

Na konkretnym przykładzie mogło by to wyglądać tak:

Przykład na przekształcenie ogólnego wzoru na całkę na wzór szczególny

 

 

14.\quad \int{\frac{dx}{{{x}^{2}}-{{a}^{2}}}=\frac{1}{2a}\ln \left| \frac{x-a}{x+a} \right|+C}

Ten wzór różni się od poprzedniego, nie chodzi tu o to, żeby skorzystać z jakiegoś wzoru, w którym zamiast ‚a’ jest ‚1’ (takiego wzoru nie ma). Alternatywą do skorzystania z tego wzoru jest tu przeprowadzenie rozkładu na ułamki proste jak w całkach wymiernych (pokazałem jak to się robi na Lekcji 5 Kursu Całek Nieoznaczonych).

Faktycznie, \frac{1}{{{x}^{2}}-{{a}^{2}}}=\frac{1}{\left( x-a \right)\left( x+a \right)} i dalej można rozkładać na ułamki proste. Na przykład:

\frac{1}{{{x}^{2}}-9}=\frac{1}{\left( x-3 \right)\left( x+3 \right)}

\frac{1}{\left( x-3 \right)\left( x+3 \right)}=\frac{A}{x-3}+\frac{B}{x+3}

Dalej mnożymy przez \left( x-3 \right)\left( x+3 \right), liczymy stałe A, B porównując wielomiany i wszystko tak, jak pokazałem na Lekcji 5 Kursu.

 

 

15.\quad \int{\frac{dx}{\sqrt{{{a}^{2}}-{{x}^{2}}}}=\arcsin \frac{x}{a}+C}

Tutaj znowu wzór w postaci ogólnej: \int{\frac{dx}{\sqrt{{{a}^{2}}-{{x}^{2}}}}=\arcsin \frac{x}{a}+C} należy doprowadzić do wzoru w postaci szczególnej: \int{\frac{dx}{\sqrt{1-{{x}^{2}}}}=\arcsin x+C}.

Robimy to podobnie jak we wzorze 13):

Przejście ze wzoru ogólnego na szczególny we wzorze z arcsin

Na konkretnym przykładzie mogło by to wyglądać tak:

Zastosowanie szczególnej postaci wzoru z arcsin

 

 

16.\quad \int{\frac{dx}{\sqrt{{{x}^{2}}+q}}=\ln \left| x+\sqrt{{{x}^{2}}+q} \right|+C}

Sprawa jest bardziej skomplikowana, wymaga zastosowania tzw. „podstawień hiperbolicznych” (chodzi o sinusa i cosinusa hiperbolicznego). W tym poście zostawiam ten temat, wkrótce na pewno napiszę o tych podstawieniach.

 

 

Tyle wzorów, o które pytał użytkownik, od siebie dodam, że dodane do listy podstawowych wzorów przeze mnie wzory:

\int{{{e}^{ax}}dx}=\frac{1}{a}{{e}^{ax}}+C

\int{\sin axdx}=-\frac{1}{a}\cos ax+C

\int{\cos axdx}=\frac{1}{a}\sin ax+C

Wyprowadza się przez proste podstawienie: t=ax

Czyli mając na przykład całkę: \int{{{e}^{-x}}dx} i NIE mogąc skorzystać (ze względu na upodobania profesora) ze wzoru \int{{{e}^{ax}}dx}=\frac{1}{a}{{e}^{ax}}+C, stosujemy podstawienie t=-x i spokojnie liczymy dalej.