Dołącz do ponad 65000 studentów na Akademii eTrapez

Zarejestruj darmowe konto i uzyskaj natychmiastowy dostęp do 16 Lekcji Video.

Poznaj podstawy matematyczne na studiach. Za darmo. We własnym domu.

Zarejestruj darmowe konto na Akademii

Ekstrema funkcji liczone pochodnymi wyższych rzędów

 

Ekstrema Funkcji Wykład 8

 

Temat: Obliczanie ekstremów funkcji pochodnymi funkcji wyższych rzędów (warunek wystarczający istnienia ekstremum przy użyciu pochodnych wyższych rzędów)

Wiemy, jak obliczać ekstrema funkcji przy pomocy obserwacji zmiany monotoniczności w otoczeniu punktu, lub znaku pierwszej pochodnej w otoczeniu tego punktu (to to samo).

Można podejść jednak do sprawy inaczej i ekstrema funkcji ugryźć obliczaniem ich wartości dla pochodnych wyższych rzędów (najczęściej wystarcza druga) i sprawdzaniem, jakie przyjmują znaki.

Weźmy punkt x_0, w którym wartość pierwszej pochodnej równa jest zero, tzn. y{prime}(x_0)=0. Zamiast rysowania wykresów, tabelek, znaków obliczamy pochodną drugiego rzędu, czyli pochodną z pochodnej y{prime}{prime}. Potem liczymy jej wartość w punkcie x_0, podstawiając go po prostu do niej. Jeżeli liczba, która nam wyjdzie, jest ujemna, funkcja osiąga w tym punkcie ekstremum lokalne maksimum. Jeżeli liczba, która nam wyjdzie, jest dodatnia funkcja osiąga w tym punkcie ekstremum lokalne minimum. Jeżeli liczba, która nam wyjdzie, jest równa 0, jesteśmy dalej w lesie i musimy na przykład obliczać pochodne następnych rzędów, o czym za moment, po przykładzie…

Przykład

Policzmy ekstrema z funkcji y=x^2

Obliczamy jej pochodną i mamy: y=2x

Przyrównujemy pochodną do zera i obliczamy, w jakich punktach równa jest zero:

2x=0

x=0

Punkt, w którym być może zostało osiągnięte ekstremum funkcji to punkt x_0=0. Żeby zobaczyć, czy faktycznie zostało w nim osiągnięte ekstremum liczymy pochodną drugiego rzędu (zamiast rysować np. wykresy) i mamy:
y{prime}{prime}=(2x){prime}=2

Liczymy jej wartość w punkcie x_0=0, wstawiając do niej za x-sa 0. W naszym prościutkim przypadku w funkcji nie mamy żadnego x, więc po prostu przechodzimy od razu do sprawdzenia znaku. Jest on dodatni (y{prime}{prime}=2), zatem funkcja osiąga w punkcie x_0=0 minimum lokalne.

A co, jeśli druga pochodna w punkcie x_0 wyjdzie równa 0? Wtedy możemy policzyć pochodną trzeciego rzędu i sprawdzić jej znak w punkcie x_0. Jeżeli wyjdzie równy 0, obliczyć pochodną czwartego rzędu i tak dalej, aż dojdziemy do takiej, która nie wyzeruje się w punkcie x_0. Wtedy zachodzi coś takiego:

– jeżeli jest to pochodna rzędu nieparzystego, funkcja nie osiąga ekstremum w tym punkcie

– jeżeli jest to pochodna rzędu parzystego, to jeśli jej wartość w punkcie x_0 jest dodatnia, funkcja osiąga ekstremum lokalne minimum w tym punkcie, a jeśli ujemna, to funkcja osiąga ekstremum lokalne maksimum w tym punkcie

Niektórzy profesorzy wymagają obliczania ekstremów funkcji w ten sposób, powodzenia więc!

 

Pisząc tego posta korzystałem z…

1. „Rachunek różniczkowy i całkowy. Tom I.” G.M. Fichtenholz. Wyd. 1966. (link partnerski – zobacz to znaczy, paragraf 27)

 

Kliknij, aby przypomnieć sobie inny warunek dostateczny istnienia ekstremum (poprzedni Wykład) <–

Kliknij, aby powrócić na stronę z wykładami o badaniu przebiegu zmienności funkcji

Kurs Pochodne

Dołącz do tysięcy studentów, którzy skorzystali z mojego Kursu Video...

  • 9 Lekcji
  • 10 godzin nagrań video
  • 90 pytań testowych i 140 przykładów do zadań domowych
  • materiały bonusowe: video (w tym o liczeniu pochodnych w WolframAlpha) i artykuły
  • cena: 39 zł
Zobacz więcej

2 komentarze na “Ekstrema funkcji liczone pochodnymi wyższych rzędów”

  1. Dagmara Bujak 23 lutego 2016 o 15:06 Link do komentarza

    Witam !
    Mam problem
    Mam do rozwiązania zadanie na zaliczenie gdzie mam policzyć najmniejszą i największą wartość funcji dla f(x,y) = x+ y przy x^2 +y^2 = 8

    Wiem, ze jest to koło.

    ale jak liczę pochodne z x i y wychodzi 1=0

    Nie mogę nigdzie znaleźć informacji co z tym fantem zrobić. Czy to znaczy, że jest to sprzeczne i nie można obliczyć ekstremum? Czy coś robię źle.

    Pozdrawiam

    • Ed 7 maja 2017 o 16:27 Link do komentarza

      Mnie tu wychodzi ekstremum w x=2 i po policzeniu drugiej pochodnej w tamtym miejscu okazuje się, że to maksimum, bo wynik jest ujemny.Pozdrawiam

Dodaj komentarz